Research Article
BibTex RIS Cite

Energy production from mucilage biomass and reduction of azo dye in microbial fuel cells

Year 2023, Volume: 29 Issue: 6, 650 - 656, 30.11.2023

Abstract

Energy recovery is an environmentally, economically and socially acceptable approach for the management of mucilage biomass. In this study, electricity generation potential of mucilage biomass by microbial fuel cell was evaluated. Mucilage biomass was used as electron donor substrate in the anode chamber and azo dye was used as electron acceptor in the cathode chamber. The maximum power density value (16.3 mW/m2) obtained in the raw mucilage is considerably lower than the power density (57.9 mV/m2) obtained from the mucilage biomass thermochemically pre-treated at high pressure and temperature. In the cathode chamber, over 87% azo dye removal was obtained. During operation under anaerobic conditions, an increase in soluble COD was observed with electron transfer due to the simultaneous continuation of dehydrogenation and biodegradation processes in the mucilage biomass.

References

  • [1] Giani M, Sist P, Berto D, Serrazanetti GP, Ventrella V, Urbani R. “The organic matrix of pelagic mucilaginous aggregates in the Tyrrhenian Sea (Mediterranean Sea)”. Marine Chemistry, 132-133, 83-94, 2012.
  • [2] Misic C, Schiaparelli S, Harriague AC. “Organic matter recycling during a mucilage event and its influence on the surrounding environment (Ligurian Sea, NW Mediterranean)”. Continental Shelf Research, 31(6), 631-43, 2011.
  • [3] Penna N, Capellacci S, Ricci F, Kovac N. “Characterization of carbohydrates in mucilage samples from the northern Adriatic Sea”. Analytical and Bioanalytical Chemistry, 376(4), 436-439, 2003.
  • [4] Flander-Putrle V, Malej A. “The evolution and phytoplankton composition of mucilaginous aggregates in the northern Adriatic Sea”. Harmful Algae, 7(6), 752-761, 2008.
  • [5] Yildirim O, Ozkaya B, Demir A. “Evaluation of the biogas potential of mucilage formed in the Marmara Sea”. International Journal of Hydrogen Energy, 47(34), 1-8, 2022.
  • [6] Mecozzi M, Pietrantonio E, Di Noto V, Pápai Z. “The humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation”. Marine Chemistry, 95(3-4), 255-69, 2005.
  • [7] Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P, Walasek-Janusz M. “A comprehensive review on plantderived mucilage: characterization, functional properties, applications, and ıts utilization for nanocarrier fabrication”. Polymers, 13(7), 1-24, 2021.
  • [8] Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. “Second generation biofuels: high-efficiency microalgae for biodiesel production”. BioEnergy Research, 1(1), 20-43, 2008.
  • [9] Chisti Y. “Biodiesel from microalgae”. Biotechnology Advances, 25(3), 294-306, 2007.
  • [10] Uma VS, Usmani Z, Sharma M, Diwan D, Sharma M, Guo M, et al. “Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities”. Phytochemistry Reviews, 22(4), 1015-1040, 2022.
  • [11] Assemany P, Marques I de P, Calijuri ML, Lopes da Silva T, Reis A. “Energetic valorization of algal biomass in a hybrid anaerobic reactor”. Journal of Environmental Management, 209, 308-315, 2018.
  • [12] Genç N, Durna E, Sayın FE. “Marmara Denizi yüzeyinden toplanan müsilaj biyokütlesinin suyunun giderilmesi: koagülasyon ve santrifüj proseslerinin optimizasyonu”. Aksaray University Journal of Science and Engineering, 5(2), 138-157, 2021.
  • [13] Çalişkan Eleren S, Öner B. “Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler Sustainable and ecofriendly raw materials for biofuels: Microalgae”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 304-319, 2019.
  • [14] Hernández-Fernández FJ, Pérez De Los Ríos A, SalarGarcía MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, et al. “Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment”. Fuel Processing Technology, 138, 284-97, 2015.
  • [15] Zhao Q, Yu H, Zhang W, Kabutey FT, Jiang J, Zhang Y, et al. “Microbial fuel cell with high content solid wastes as substrates: a review”. Frontiers of Environmental Science and Engineering, 11(2), 1-17, 2017.
  • [16] Mohyudin S, Farooq R, Jubeen F, Rasheed T, Fatima M, Sher F. “Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation”. Environmental Research, 204, 1-14, 2022.
  • [17] Zhou M, Yang J, Wang H, Jin T, Hassett DJ, Gu T. Bioelectrochemistry of Microbial Fuel Cells and their Potential Applications in Bioenergy. Editors: Gupta V, Tuohy MG, Kubicek CP, Saddler J, Xu F. Bioenergy Research: Advances and Applications, 131-152, Amsterdam, The Netherlands, Elsevier, 2014.
  • [18] Özcan E. Mikrobiyal Yakıt Hücrelerinde Membran ve İşletme Şartlarındaki Değişimin Güç Üretimine Etkisi. Yüksek Lisans Tezi, Hacettepe Universitesi, Ankara, Türkiye, 2013.
  • [19] Hassan SHA, Kim YS, Oh SE. “Power generation from cellulose using mixed and pure cultures of cellulosedegrading bacteria in a microbial fuel cell”. Enzyme and Microbial Technology, 51(5), 269-73, 2012.
  • [20] Çatal T, Bermek H, Li K, Liu H. “Electricity generation from disaccharides using microbial fuel cells”. Itüdergisi/c Fen Bilimleri, 7, 123-31, 2009.
  • [21] Liu Z, Liu J, Zhang S, Su Z. “Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates”. Biochemical Engineering Journal, 45(3), 185-191, 2009.
  • [22] Heilmann J, Logan BE. “Production of electricity from proteins using a microbial fuel cell”. Water Environ Res. 78(5), 531-537, 2006.
  • [23] Ömeroğlu S. Wastewater Sludge in Bıoelectricity Generation Using Microbial Fuel Cells. PhD Thesis, Middle East Technical University, Ankara, Turkey, 2019.
  • [24] Köroğlu EO. Mikrobiyal Yakıt Hücrelerinde Evsel Atıksulardan Elektrik Üretimi. Yıldız Teknik Üniversitesi.
  • [25] Li Y, Wu Y, Puranik S, Lei Y, Vadas T, Li B. “Metals as electron acceptors in single-chamber microbial fuel cells”. Journal of Power Sources, 269, 430-439, 2014.
  • [26] Rahmani AR, Navidjouy N, Rahimnejad M, Alizadeh S, Samarghandi MR, Nematollahi D. “Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment”. Environmental Technology, 43(1), 1-9, 2020.
  • [27] Wang C, Wu Y, Hu W, Li Y. “Autotrophic Denitrification for Nitrate Removal from Groundwater with an Integrated Microbial Fuel Cells (MFCs)-microbial Electrolysis Cell (MEC) System”. International Journal of Electrochemical Science, 16, 1-11, 2021.
  • [28] Jiang C, Yang Q, Wang D, Zhong Y, Chen F, Li X, et al. “Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell”. Chemical Engineering Journal, 308, 783-90, 2017.
  • [29] He CS, Mu ZX, Yang HY, Wang YZ, Mu Y, Yu HQ. “Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review”. Chemosphere, 140, 12-7, 2015.
  • [30] Durna Pişkin E, Genç N. “Microbial fuel cells in electricity generation with waste treatment; alternative electron acceptors”. Sigma Journal of Engineering and Natural Sciences, 2022. https://doi.org/10.5505/pajes.2022.46037.
  • [31] Oon Y-SY-LLS, Ong S-AA, Ho L-NN, Wong Y-SS, Oon Y-SYLLS, Lehl HK, et al. “Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation”. Journal of Hazardous Materials, 325, 170-177, 2017.
  • [32] Liu L, Li FB, Feng CH, Li XZ. “Microbial fuel cell with an azodye-feeding cathode”. Applied Microbiology and Biotechnology, 85(1), 175-183, 2009.
  • [33] Kılıç A, Uysal Y, Çınar Ö. “Laboratuvar ölçekli bir mikrobiyal yakıt hücresinde sentetik atıksudan elektrik üretimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 17(1), 43-49, 2011.
  • [34] Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, et al. “Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode”. Bioresource Technology, 101(10), 3500-3505, 2010.
  • [35] Taşkan B, Bakır M, Taşkan E. “Enhanced power generation from algal biomass using multi-anode membrane-less sediment microbial fuel cell”. International Journal of Energy Research, 45(2), 2011-2022, 2021.
  • [36] Algar CK, Howard A, Ward C, Wanger G. “Sediment microbial fuel cells as a barrier to sulfide accumulation and their potential for sediment remediation beneath aquaculture pens”. Scientific Reports, 10(1), 1-12, 2020.

Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden enerji üretimi ve azo boyar maddenin indirgenmesi

Year 2023, Volume: 29 Issue: 6, 650 - 656, 30.11.2023

Abstract

Müsilaj biyokütlesinin yönetiminde enerji olarak geri kazanım, çevresel, ekonomik ve sosyal açıdan kabul gören bir yaklaşımdır. Bu çalışmada müsilaj biyokütlesinin mikrobiyal yakıt hücresinde elektrik üretim potansiyeli değerlendirilmiştir. Müsilaj biyokütlesi anot bölmesinde elektron verici substrat, azo boyar maddesi ise katot bölmesinde elektron alıcısı olarak kullanılmıştır. Ham müsilajda elde edilen maksimum güç yoğunluğu değeri (16.3 mW/m2), yüksek basınç ve sıcaklıkta termokimyasal olarak ön işlem görmüş müsilaj biyokütlesinden elde edilen güç yoğunluğu değerinden (57.9 mV/m2) oldukça düşük elde edilmiştir. Katot bölmesinde ise %87’nin üzerinde renk giderimi elde edilmiştir. Anaerobik koşullarda işletim süresince müsilaj biyokütlesinde dehidrojenizasyon ile biyoçözünme süreçlerinin eş zamanlı olarak devam etmesi sebebi ile elektron transferi ile birlikte çözünür KOİ’de artış gözlenmiştir.

References

  • [1] Giani M, Sist P, Berto D, Serrazanetti GP, Ventrella V, Urbani R. “The organic matrix of pelagic mucilaginous aggregates in the Tyrrhenian Sea (Mediterranean Sea)”. Marine Chemistry, 132-133, 83-94, 2012.
  • [2] Misic C, Schiaparelli S, Harriague AC. “Organic matter recycling during a mucilage event and its influence on the surrounding environment (Ligurian Sea, NW Mediterranean)”. Continental Shelf Research, 31(6), 631-43, 2011.
  • [3] Penna N, Capellacci S, Ricci F, Kovac N. “Characterization of carbohydrates in mucilage samples from the northern Adriatic Sea”. Analytical and Bioanalytical Chemistry, 376(4), 436-439, 2003.
  • [4] Flander-Putrle V, Malej A. “The evolution and phytoplankton composition of mucilaginous aggregates in the northern Adriatic Sea”. Harmful Algae, 7(6), 752-761, 2008.
  • [5] Yildirim O, Ozkaya B, Demir A. “Evaluation of the biogas potential of mucilage formed in the Marmara Sea”. International Journal of Hydrogen Energy, 47(34), 1-8, 2022.
  • [6] Mecozzi M, Pietrantonio E, Di Noto V, Pápai Z. “The humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation”. Marine Chemistry, 95(3-4), 255-69, 2005.
  • [7] Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P, Walasek-Janusz M. “A comprehensive review on plantderived mucilage: characterization, functional properties, applications, and ıts utilization for nanocarrier fabrication”. Polymers, 13(7), 1-24, 2021.
  • [8] Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. “Second generation biofuels: high-efficiency microalgae for biodiesel production”. BioEnergy Research, 1(1), 20-43, 2008.
  • [9] Chisti Y. “Biodiesel from microalgae”. Biotechnology Advances, 25(3), 294-306, 2007.
  • [10] Uma VS, Usmani Z, Sharma M, Diwan D, Sharma M, Guo M, et al. “Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities”. Phytochemistry Reviews, 22(4), 1015-1040, 2022.
  • [11] Assemany P, Marques I de P, Calijuri ML, Lopes da Silva T, Reis A. “Energetic valorization of algal biomass in a hybrid anaerobic reactor”. Journal of Environmental Management, 209, 308-315, 2018.
  • [12] Genç N, Durna E, Sayın FE. “Marmara Denizi yüzeyinden toplanan müsilaj biyokütlesinin suyunun giderilmesi: koagülasyon ve santrifüj proseslerinin optimizasyonu”. Aksaray University Journal of Science and Engineering, 5(2), 138-157, 2021.
  • [13] Çalişkan Eleren S, Öner B. “Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler Sustainable and ecofriendly raw materials for biofuels: Microalgae”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 304-319, 2019.
  • [14] Hernández-Fernández FJ, Pérez De Los Ríos A, SalarGarcía MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, et al. “Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment”. Fuel Processing Technology, 138, 284-97, 2015.
  • [15] Zhao Q, Yu H, Zhang W, Kabutey FT, Jiang J, Zhang Y, et al. “Microbial fuel cell with high content solid wastes as substrates: a review”. Frontiers of Environmental Science and Engineering, 11(2), 1-17, 2017.
  • [16] Mohyudin S, Farooq R, Jubeen F, Rasheed T, Fatima M, Sher F. “Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation”. Environmental Research, 204, 1-14, 2022.
  • [17] Zhou M, Yang J, Wang H, Jin T, Hassett DJ, Gu T. Bioelectrochemistry of Microbial Fuel Cells and their Potential Applications in Bioenergy. Editors: Gupta V, Tuohy MG, Kubicek CP, Saddler J, Xu F. Bioenergy Research: Advances and Applications, 131-152, Amsterdam, The Netherlands, Elsevier, 2014.
  • [18] Özcan E. Mikrobiyal Yakıt Hücrelerinde Membran ve İşletme Şartlarındaki Değişimin Güç Üretimine Etkisi. Yüksek Lisans Tezi, Hacettepe Universitesi, Ankara, Türkiye, 2013.
  • [19] Hassan SHA, Kim YS, Oh SE. “Power generation from cellulose using mixed and pure cultures of cellulosedegrading bacteria in a microbial fuel cell”. Enzyme and Microbial Technology, 51(5), 269-73, 2012.
  • [20] Çatal T, Bermek H, Li K, Liu H. “Electricity generation from disaccharides using microbial fuel cells”. Itüdergisi/c Fen Bilimleri, 7, 123-31, 2009.
  • [21] Liu Z, Liu J, Zhang S, Su Z. “Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates”. Biochemical Engineering Journal, 45(3), 185-191, 2009.
  • [22] Heilmann J, Logan BE. “Production of electricity from proteins using a microbial fuel cell”. Water Environ Res. 78(5), 531-537, 2006.
  • [23] Ömeroğlu S. Wastewater Sludge in Bıoelectricity Generation Using Microbial Fuel Cells. PhD Thesis, Middle East Technical University, Ankara, Turkey, 2019.
  • [24] Köroğlu EO. Mikrobiyal Yakıt Hücrelerinde Evsel Atıksulardan Elektrik Üretimi. Yıldız Teknik Üniversitesi.
  • [25] Li Y, Wu Y, Puranik S, Lei Y, Vadas T, Li B. “Metals as electron acceptors in single-chamber microbial fuel cells”. Journal of Power Sources, 269, 430-439, 2014.
  • [26] Rahmani AR, Navidjouy N, Rahimnejad M, Alizadeh S, Samarghandi MR, Nematollahi D. “Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment”. Environmental Technology, 43(1), 1-9, 2020.
  • [27] Wang C, Wu Y, Hu W, Li Y. “Autotrophic Denitrification for Nitrate Removal from Groundwater with an Integrated Microbial Fuel Cells (MFCs)-microbial Electrolysis Cell (MEC) System”. International Journal of Electrochemical Science, 16, 1-11, 2021.
  • [28] Jiang C, Yang Q, Wang D, Zhong Y, Chen F, Li X, et al. “Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell”. Chemical Engineering Journal, 308, 783-90, 2017.
  • [29] He CS, Mu ZX, Yang HY, Wang YZ, Mu Y, Yu HQ. “Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review”. Chemosphere, 140, 12-7, 2015.
  • [30] Durna Pişkin E, Genç N. “Microbial fuel cells in electricity generation with waste treatment; alternative electron acceptors”. Sigma Journal of Engineering and Natural Sciences, 2022. https://doi.org/10.5505/pajes.2022.46037.
  • [31] Oon Y-SY-LLS, Ong S-AA, Ho L-NN, Wong Y-SS, Oon Y-SYLLS, Lehl HK, et al. “Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation”. Journal of Hazardous Materials, 325, 170-177, 2017.
  • [32] Liu L, Li FB, Feng CH, Li XZ. “Microbial fuel cell with an azodye-feeding cathode”. Applied Microbiology and Biotechnology, 85(1), 175-183, 2009.
  • [33] Kılıç A, Uysal Y, Çınar Ö. “Laboratuvar ölçekli bir mikrobiyal yakıt hücresinde sentetik atıksudan elektrik üretimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 17(1), 43-49, 2011.
  • [34] Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, et al. “Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode”. Bioresource Technology, 101(10), 3500-3505, 2010.
  • [35] Taşkan B, Bakır M, Taşkan E. “Enhanced power generation from algal biomass using multi-anode membrane-less sediment microbial fuel cell”. International Journal of Energy Research, 45(2), 2011-2022, 2021.
  • [36] Algar CK, Howard A, Ward C, Wanger G. “Sediment microbial fuel cells as a barrier to sulfide accumulation and their potential for sediment remediation beneath aquaculture pens”. Scientific Reports, 10(1), 1-12, 2020.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering (Other)
Journal Section Research Article
Authors

Nevim Genç

Elif Durna Pişkin

Publication Date November 30, 2023
Published in Issue Year 2023 Volume: 29 Issue: 6

Cite

APA Genç, N., & Durna Pişkin, E. (2023). Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden enerji üretimi ve azo boyar maddenin indirgenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(6), 650-656.
AMA Genç N, Durna Pişkin E. Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden enerji üretimi ve azo boyar maddenin indirgenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2023;29(6):650-656.
Chicago Genç, Nevim, and Elif Durna Pişkin. “Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden Enerji üretimi Ve Azo Boyar Maddenin Indirgenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 6 (November 2023): 650-56.
EndNote Genç N, Durna Pişkin E (November 1, 2023) Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden enerji üretimi ve azo boyar maddenin indirgenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 6 650–656.
IEEE N. Genç and E. Durna Pişkin, “Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden enerji üretimi ve azo boyar maddenin indirgenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 6, pp. 650–656, 2023.
ISNAD Genç, Nevim - Durna Pişkin, Elif. “Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden Enerji üretimi Ve Azo Boyar Maddenin Indirgenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/6 (November 2023), 650-656.
JAMA Genç N, Durna Pişkin E. Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden enerji üretimi ve azo boyar maddenin indirgenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:650–656.
MLA Genç, Nevim and Elif Durna Pişkin. “Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden Enerji üretimi Ve Azo Boyar Maddenin Indirgenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 6, 2023, pp. 650-6.
Vancouver Genç N, Durna Pişkin E. Mikrobiyal yakıt hücrelerinde müsilaj biyokütlesinden enerji üretimi ve azo boyar maddenin indirgenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(6):650-6.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.