Research Article
BibTex RIS Cite

Dual surface activation of thermoplastic polyurethane (TPU) guided membranes

Year 2024, Volume: 30 Issue: 1, 95 - 102, 29.02.2024

Abstract

Thermoplastic polyurethane (TPU), which consisting of alternant hard- and soft segment is a kind of segmented block copolymer. Amazing elasticity, transparency, and strength at break have expanded the application of TPU in automotive, buildings, coatings, sealants, medicine, and rubber industries. Further, TPUs lack active group, they have high crystallinity, low surface energy, and chemical inertness. Therefore, its properties needed to restore. Recently, plasma or alkali treatment have been suggested to modify the surface properties of nanostructures. Especially, alkali treatment is also versatile one, and creates changes in dimensions, and fine structure without change the surface functional groups. The aim of this study was to evaluate the influence of surface treatment method on newly identified TPU membranes containing of phosphatidylcholine (PC) and polyethylene glycol (PEG). Raw TPU surface was modified by alkali treatment with different percentages of NaOH: 1M and 3 M without heating for a constant soaking time of 30 min. Surface morphology, roughness and wettability properties of treated TPU membranes were investigated. The experimental results showed that the all treated TPU membranes showed surface feature morphology with increasing roughness, i.e. Sa (areal average roughness) values of the TPU-PEG or TPU-PC after the submersion in 1 M solution of NaOH became about 2.51x102±15.6 and 2.79x102±17.3 nm while that of TPU was 6.24x101±6.9 nm. Furthermore, while the contact angle values of TPU-PEG after alkalization reduced from 40.6±0.5° to 21±0.2° and patterned TPU-PC showed significantly superior cell attachment to the MC3T3-E1 cells than the pristine TPU. The study’s findings indicate NaOH-treated composite TPU membranes could be a possible guided agent, which supported the bone induction, and differentiation.

References

  • [1] Bhattarai SR, Bhattarai N, Viswanathamurthi P, Yi HK, Hwang PH, Kim HY. “Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity”. Journal of Biomedical Materials Research Part A, 78(2), 247-257, 2006.
  • [2] Nandakumar A, Tahmasebi Birgani Z, Santos D, Mentink A, Auffermann N, van der Werf K, Bennink M, Moroni L, van Blitterswijk C, Habibovic P. “Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration”. Biofabrication, 5(1), 1-14, 2013.
  • [3] Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R, De Geyter N. “Fabrication and plasma modification of nanofibrous tissue engineering scaffolds”. Nanomaterials (Basel), 10(1), 1-63, 2020.
  • [4] Ho WF, Lai CH, Hsu HC, Wu SC. “ Surface modification of a low-modulus Ti-7.5 Mo alloy treated with aqueous NaOH”. Surface Coating Technology, 203 (20-21), 3142-3150, 2009.
  • [5] Chen F, Lee C, Teoh SH. “ Nanofibrous modification on ultra-thin poly (e-caprolactone) membrane via electrospinning”. Materials Science and Engineering: C, 27(2), 325-332, 2007.
  • [6] Yoo HS, Kim TG, Park TG. “Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery”. Advanced Drug Delivery Reviews, 61(12), 1033-1042, 2009.
  • [7] Bertoldi S, Farè S, Denegri M, Rossi D, Haugen HJ, Parolini O, Tanzi MC. “Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results”. Journal of Materials Science Materials in Medicine, 21(3), 1005-1011, 2010.
  • [8] Kasten P, Beyen I, Niemeyer P, Luginbühl R, Bohner M, Richter W. “Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study”. Acta Biomaterialia, 4(6), 1904-1915, 2008.
  • [9] Thapa A, Miller DC, Webster TJ, Haberstroh KM. “Nano-structured polymers enhance bladder smooth muscle cell function”. Biomaterials, 24(17), 2915-2926, 2003.
  • [10] Miller DC, Thapa A, Haberstroh KM, Webster TJ. “Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces”. IEEE Transactions on Nanobioscience, 1(2), 61-66, 2002.
  • [11] Gorna K, Gogolewski S. “Biodegradable porous polyurethane scaffolds for tissue repair and regeneration”. Journal of Biomedical Materials Research Part A, 79(1), 128-138, 2006.
  • [12] Zanetta M, Quirici N, Demarosi F, Tanzi MC, Rimondini L, Farè S. “Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts”. Acta Biomaterialia, 5(4), 1126-1136, 2009.
  • [13] Khodadoust M, Mohebbi-Kalhori D, Jirofti N. “Fabrication and characterization of electrospun Bi-Hybrid PU/PET scaffolds for small-diameter vascular grafts applications”. Cardiovascular Engineering and Technology, 9(1), 73-83, 2018.
  • [14] Gorji M, Karimi M, Nasheroahkam S. “Electrospun PU/P(AMPS-GO) nanofibrous membrane with dual-mode hydrophobic-hydrophilic properties for protective clothing applications”. Journal of Industrial Textiles, 47(6), 1166-1184, 2018.
  • [15] Michel R, Pasche S, Textor M, Castner DG. “Influence of PEG architecture on protein adsorption and conformation”. Langmuir, 21(26), 12327-12332, 2005.
  • [16] Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. “Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces”. Biomaterials, 28(29), 4192-4199, 2007.
  • [17] Chen J, Wu W, Zheng Y, Hou K, Xu Y, Zai J. “Drought resistance of Angelica aahurica during seedling stage under polyethylene glycol (PEG6000) simulated drought stress”. China Journal of Chinese Materia Medica, 35(2), 149-53, 2010.
  • [18] Xu Z, Liu P, Li H, Zhang M, Wu Q. “In vitro study on electrospun lecithin-based poly (L-lactic acid) scaffolds and their biocompatibility”. Journal of Biomaterials Science Polymer Edition, 31(17), 2285-2298, 2020.
  • [19] Wang Y, Cui FZ, Jiao YP, Hu K, Fan DD. “Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility”. Biomedical Materials, 3(1), 1-6, 2008.
  • [20] Tian P, Yan R, Tong Y, Jia L, Yao J. “Effect of alkali treatment on adhesion of thermoplastic polyurethane elastomer/polyester inter-ply hybrid composites”. Pigment & Resin Technology, 49(5), 377-386, 2020.
  • [21] Agour M, Abdal-hay A, Hassan MK, Bartnikowski M, Ivanovski S. “Alkali-Treated titanium coated with a polyurethane, magnesium and hydroxyapatite composite for bone tissue engineering”. Nanomaterials, 11(5), 1-14, 2021.
  • [22] Karahaliloğlu Z. “Electrospun PU-PEG and PU-PC hybrid scaffolds for vascular tissue engineering”. Fibers and Polymers, 18, 2135-2145, 2017.
  • [23] Hashim MY, Amin AM, Marwah OMF, Othman MH, Yunus MRM, Huat NC. “The effect of alkali treatment under various conditions on physical properties of kenaf fiber”. Journal of Physics: Conference Series, 914, 1-16, 2017.
  • [24] Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L. “Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene”. Textile Research Journal, 83(6), 606-617, 2013.
  • [25] Kamaruddin ZH, Jumaidin R, Ilyas RA, Selamat MZ, Alamjuri RH, Yusof FAM. “Influence of alkali treatment on the mechanical, thermal, water absorption, and biodegradation properties of cymbopogan citratus fiber-reinforced, thermoplastic cassava starch-palm wax composites”. Polymers, 14(14), 1-26, 2022.
  • [26] Tian P, Yan R, Tong Y, Jia L, Yao J. “Effect of alkali treatment on adhesion of thermoplastic polyurethane elastomer/polyester inter-ply hybrid composites”. Pigment & Resin Technology, 49(5), 377-386, 2020.
  • [27] Dubey P, Bhushan B, Sachdev A, Matai I, Uday Kumar S, Gopinath P. “Silver‐Nanoparticle‐incorporated composite nanofibers for potential wound‐dressing applications”. Journal of Applied Polymer Science, 132(35), 1-12, 2015.
  • [28] Shu Y, Ou G, Wang L, Zou J, Li Q. “Surface modification of titanium with heparin-chitosan multilayers via layer-by-layer self-assembly technique”. Journal of Nanomaterials, 2011, 1-8, 2011.
  • [29] Rajeshkumar G, Hariharan V, Indran S, Sanjay MR, Siengchin S, Maran JP, Al-Dhabi NA, Karuppiah P. “Influence of sodium hydroxide (NaOH) treatment on mechanical properties and morphological behaviour of Phoenix sp. fiber/epoxy composites”. Journal of Polymers and the Environment, 29(3), 765-774, 2021.
  • [30] Bosworth, LA, Hu W, Shi Y, Cartmell SH. “Enhancing biocompatibility without compromising material properties: an optimised NaOH treatment for electrospun polycaprolactone fibres”. Journal of Nanomaterials, 2019, 1-11, 2019.
  • [31] Karahaliloğlu Z, Ercan B, Chung S, Taylor E, Denkbas EB, Webster TJ. “Nanostructured anti‐bacterial poly‐lactic‐co‐glycolic acid films for skin tissue engineering applications”. Journal of Biomedical Materials Research Part A, 102(12), 4598-4608, 2014.
  • [32] Son SR, Linh NB, Yang HM, Lee BT. “In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration”. Science and Technology of Advanced Materials, 14(1), 1-10, 2013.
  • [33] Sharma J, Zhang X, Sarker T, Yan X, Washburn L, Qu H, Guo Z, Kucknoor A, Wei S. “Biocompatible electrospun tactic poly(methyl methacrylate) blend fibers”. Polymer, 55(15), 3261-3269, 2014.

Termoplastik poliüretan (TPU) kılavuz membranlarının ikili yüzey aktivasyonu

Year 2024, Volume: 30 Issue: 1, 95 - 102, 29.02.2024

Abstract

Termoplastik poliüretan (TPU), yumuşak ve sert segmentten oluşan blok kopolimer türüdür. İlgi çekici elastisitesi, transparanlığı ve kopmaya karşı direnci, TPU’nun otomotiv, inşaat, kaplama, dolgu, tıp ve kauçuk endüstrisindeki uygulamalarını genişletmiştir. Ancak TPU aktif gruplara sahip değildir ve bu özellik onu yüksek kristalin, düşük yüzey enerjili ve kimyasal olarak inert yapar. Bu nedenle özelliklerinin iyileştirilmesine ihtiyacı vardır. Son zamanlarda plazma ya da alkali muamelesi nanoyapıların yüzey özelliklerinin modifiye edilmesi için önerilmektedir. Özellikle, alkali müdahalesi çok yönlü yöntemlerden bir tanesidir ve yüzeydeki fonksiyonel grupları değiştirmeden küçük yapılar oluşturur ve boyutlarda değişiklik yaratır. Bu çalışmadaki amaç, fosfatidilkolin (PC) ve polietilenglikol (PEG) içeren yeni tanımlanmış TPU membranlar üzerindeki yüzey modifikasyon metodunun etkisini araştırmaktır. Saf TPU, farklı yüzdelerdeki (1 M ve 3 M) NaOH ile ısıtma olmaksızın 30 dakika süreyle, alkali muamelesi ile modifiye edilmiştir. Muamele edilmiş TPU membranların yüzey morfolojisi, pürüzlülüğü ve ıslanabilirlik özellikleri incelenmiştir. Deney sonuçları, tüm muamele edilmiş TPU membranlarında artan yüzey pürüzlüğüne işaret etmektedir; şöyle ki 1 M NaOH solüsyonuna daldırılan TPU-PEG ya da TPU-PC’nin Sa (yüzey alanı pürüzlülüğü) değeri 2.51x102±15.6 ve 2.79x102±17.3 nm iken TPU’nun 6.24x101±6.9 nm’dir. Ayrıca TPU-PEG’in temas açısı alkalizasyon sonrasında 40.6±0.5’den 21±0.2°’e düşmüştür ve yüzeyi modifiye edilmiş TPU-PC, saf TPU’ya kıyasla üstün bir hücre yapışması göstermiştir. Çalışmanın bulguları, NaOH-muamele edilmiş kompozit TPU membranların kemik indüksiyonunu ve farklılaşmasını destekleyen potansiyel bir kılavuz ajanı olacağını göstermektedir.

References

  • [1] Bhattarai SR, Bhattarai N, Viswanathamurthi P, Yi HK, Hwang PH, Kim HY. “Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity”. Journal of Biomedical Materials Research Part A, 78(2), 247-257, 2006.
  • [2] Nandakumar A, Tahmasebi Birgani Z, Santos D, Mentink A, Auffermann N, van der Werf K, Bennink M, Moroni L, van Blitterswijk C, Habibovic P. “Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration”. Biofabrication, 5(1), 1-14, 2013.
  • [3] Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R, De Geyter N. “Fabrication and plasma modification of nanofibrous tissue engineering scaffolds”. Nanomaterials (Basel), 10(1), 1-63, 2020.
  • [4] Ho WF, Lai CH, Hsu HC, Wu SC. “ Surface modification of a low-modulus Ti-7.5 Mo alloy treated with aqueous NaOH”. Surface Coating Technology, 203 (20-21), 3142-3150, 2009.
  • [5] Chen F, Lee C, Teoh SH. “ Nanofibrous modification on ultra-thin poly (e-caprolactone) membrane via electrospinning”. Materials Science and Engineering: C, 27(2), 325-332, 2007.
  • [6] Yoo HS, Kim TG, Park TG. “Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery”. Advanced Drug Delivery Reviews, 61(12), 1033-1042, 2009.
  • [7] Bertoldi S, Farè S, Denegri M, Rossi D, Haugen HJ, Parolini O, Tanzi MC. “Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results”. Journal of Materials Science Materials in Medicine, 21(3), 1005-1011, 2010.
  • [8] Kasten P, Beyen I, Niemeyer P, Luginbühl R, Bohner M, Richter W. “Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study”. Acta Biomaterialia, 4(6), 1904-1915, 2008.
  • [9] Thapa A, Miller DC, Webster TJ, Haberstroh KM. “Nano-structured polymers enhance bladder smooth muscle cell function”. Biomaterials, 24(17), 2915-2926, 2003.
  • [10] Miller DC, Thapa A, Haberstroh KM, Webster TJ. “Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces”. IEEE Transactions on Nanobioscience, 1(2), 61-66, 2002.
  • [11] Gorna K, Gogolewski S. “Biodegradable porous polyurethane scaffolds for tissue repair and regeneration”. Journal of Biomedical Materials Research Part A, 79(1), 128-138, 2006.
  • [12] Zanetta M, Quirici N, Demarosi F, Tanzi MC, Rimondini L, Farè S. “Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts”. Acta Biomaterialia, 5(4), 1126-1136, 2009.
  • [13] Khodadoust M, Mohebbi-Kalhori D, Jirofti N. “Fabrication and characterization of electrospun Bi-Hybrid PU/PET scaffolds for small-diameter vascular grafts applications”. Cardiovascular Engineering and Technology, 9(1), 73-83, 2018.
  • [14] Gorji M, Karimi M, Nasheroahkam S. “Electrospun PU/P(AMPS-GO) nanofibrous membrane with dual-mode hydrophobic-hydrophilic properties for protective clothing applications”. Journal of Industrial Textiles, 47(6), 1166-1184, 2018.
  • [15] Michel R, Pasche S, Textor M, Castner DG. “Influence of PEG architecture on protein adsorption and conformation”. Langmuir, 21(26), 12327-12332, 2005.
  • [16] Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. “Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces”. Biomaterials, 28(29), 4192-4199, 2007.
  • [17] Chen J, Wu W, Zheng Y, Hou K, Xu Y, Zai J. “Drought resistance of Angelica aahurica during seedling stage under polyethylene glycol (PEG6000) simulated drought stress”. China Journal of Chinese Materia Medica, 35(2), 149-53, 2010.
  • [18] Xu Z, Liu P, Li H, Zhang M, Wu Q. “In vitro study on electrospun lecithin-based poly (L-lactic acid) scaffolds and their biocompatibility”. Journal of Biomaterials Science Polymer Edition, 31(17), 2285-2298, 2020.
  • [19] Wang Y, Cui FZ, Jiao YP, Hu K, Fan DD. “Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility”. Biomedical Materials, 3(1), 1-6, 2008.
  • [20] Tian P, Yan R, Tong Y, Jia L, Yao J. “Effect of alkali treatment on adhesion of thermoplastic polyurethane elastomer/polyester inter-ply hybrid composites”. Pigment & Resin Technology, 49(5), 377-386, 2020.
  • [21] Agour M, Abdal-hay A, Hassan MK, Bartnikowski M, Ivanovski S. “Alkali-Treated titanium coated with a polyurethane, magnesium and hydroxyapatite composite for bone tissue engineering”. Nanomaterials, 11(5), 1-14, 2021.
  • [22] Karahaliloğlu Z. “Electrospun PU-PEG and PU-PC hybrid scaffolds for vascular tissue engineering”. Fibers and Polymers, 18, 2135-2145, 2017.
  • [23] Hashim MY, Amin AM, Marwah OMF, Othman MH, Yunus MRM, Huat NC. “The effect of alkali treatment under various conditions on physical properties of kenaf fiber”. Journal of Physics: Conference Series, 914, 1-16, 2017.
  • [24] Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L. “Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene”. Textile Research Journal, 83(6), 606-617, 2013.
  • [25] Kamaruddin ZH, Jumaidin R, Ilyas RA, Selamat MZ, Alamjuri RH, Yusof FAM. “Influence of alkali treatment on the mechanical, thermal, water absorption, and biodegradation properties of cymbopogan citratus fiber-reinforced, thermoplastic cassava starch-palm wax composites”. Polymers, 14(14), 1-26, 2022.
  • [26] Tian P, Yan R, Tong Y, Jia L, Yao J. “Effect of alkali treatment on adhesion of thermoplastic polyurethane elastomer/polyester inter-ply hybrid composites”. Pigment & Resin Technology, 49(5), 377-386, 2020.
  • [27] Dubey P, Bhushan B, Sachdev A, Matai I, Uday Kumar S, Gopinath P. “Silver‐Nanoparticle‐incorporated composite nanofibers for potential wound‐dressing applications”. Journal of Applied Polymer Science, 132(35), 1-12, 2015.
  • [28] Shu Y, Ou G, Wang L, Zou J, Li Q. “Surface modification of titanium with heparin-chitosan multilayers via layer-by-layer self-assembly technique”. Journal of Nanomaterials, 2011, 1-8, 2011.
  • [29] Rajeshkumar G, Hariharan V, Indran S, Sanjay MR, Siengchin S, Maran JP, Al-Dhabi NA, Karuppiah P. “Influence of sodium hydroxide (NaOH) treatment on mechanical properties and morphological behaviour of Phoenix sp. fiber/epoxy composites”. Journal of Polymers and the Environment, 29(3), 765-774, 2021.
  • [30] Bosworth, LA, Hu W, Shi Y, Cartmell SH. “Enhancing biocompatibility without compromising material properties: an optimised NaOH treatment for electrospun polycaprolactone fibres”. Journal of Nanomaterials, 2019, 1-11, 2019.
  • [31] Karahaliloğlu Z, Ercan B, Chung S, Taylor E, Denkbas EB, Webster TJ. “Nanostructured anti‐bacterial poly‐lactic‐co‐glycolic acid films for skin tissue engineering applications”. Journal of Biomedical Materials Research Part A, 102(12), 4598-4608, 2014.
  • [32] Son SR, Linh NB, Yang HM, Lee BT. “In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration”. Science and Technology of Advanced Materials, 14(1), 1-10, 2013.
  • [33] Sharma J, Zhang X, Sarker T, Yan X, Washburn L, Qu H, Guo Z, Kucknoor A, Wei S. “Biocompatible electrospun tactic poly(methyl methacrylate) blend fibers”. Polymer, 55(15), 3261-3269, 2014.
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Zeynep Karahaliloğlu

Publication Date February 29, 2024
Published in Issue Year 2024 Volume: 30 Issue: 1

Cite

APA Karahaliloğlu, Z. (2024). Dual surface activation of thermoplastic polyurethane (TPU) guided membranes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 95-102.
AMA Karahaliloğlu Z. Dual surface activation of thermoplastic polyurethane (TPU) guided membranes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2024;30(1):95-102.
Chicago Karahaliloğlu, Zeynep. “Dual Surface Activation of Thermoplastic Polyurethane (TPU) Guided Membranes”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 1 (February 2024): 95-102.
EndNote Karahaliloğlu Z (February 1, 2024) Dual surface activation of thermoplastic polyurethane (TPU) guided membranes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 1 95–102.
IEEE Z. Karahaliloğlu, “Dual surface activation of thermoplastic polyurethane (TPU) guided membranes”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, pp. 95–102, 2024.
ISNAD Karahaliloğlu, Zeynep. “Dual Surface Activation of Thermoplastic Polyurethane (TPU) Guided Membranes”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/1 (February 2024), 95-102.
JAMA Karahaliloğlu Z. Dual surface activation of thermoplastic polyurethane (TPU) guided membranes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:95–102.
MLA Karahaliloğlu, Zeynep. “Dual Surface Activation of Thermoplastic Polyurethane (TPU) Guided Membranes”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, 2024, pp. 95-102.
Vancouver Karahaliloğlu Z. Dual surface activation of thermoplastic polyurethane (TPU) guided membranes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(1):95-102.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif