Research Article
BibTex RIS Cite

Synthesis and characterization of vermiculite-based composite structures impregnated with MgCl2 and LiNO3 for low-grade heat storage

Year 2024, Volume: 30 Issue: 2, 128 - 135, 30.04.2024

Abstract

In recent years, Thermochemical Heat Storage (THS) systems and storage materials are important for the development of these systems have attracted a great interest. In this study, composite materials were prepared by impregnating sorbent salts (MgCl2, LiNO3) into vermiculite (V). The cyclical heat storage behaviors of the obtained composite structures were investigated with the laboratory scale thermochemical heat exchanger prototype system. Accordingly, the stability of the V+MgCl2 composite during repeated cycles and the energy storage density (Ed) value calculated as a result of the measurements in the prototype were found to be higher than the V+LiNO3 composite, as in the DSC analysis results.

References

  • [1] El Haj Assad M, Alhuyi Nazari M, Rosen MA. Design and Performance Optimization of Renewable Energy Systems. Editors: El Haj Assad M, Rosen MA. Applications of Renewable Energy Sources, 1-15, London, UK, Academic Press, 2021.
  • [2] Dinçer I, Rosen MA. Thermal Energy Storage: Systems and Applications. 2nd ed. New York, USA, John Wiley and Sons, 2010.
  • [3] ElBahloul AA, Zeidan ESB, El-Sharkawy II, Hamed AM. Radwan A. “Recent advances in multistage sorption thermal energy storage systems”. Journal of Energy Storage, 45, 1-21, 2022.
  • [4] Ausfelder F, et al. “Energy storage as part of a secure energy supply”. ChemBioEng Reviews., 4(3), 144-210, 2017.
  • [5] Alva G, Lin Y, Fang G. “An overview of thermal energy storage systems”. Energy, 144, 341-378, 2018.
  • [6] Yan T, Li TX, Wang RZ. Advances in Solar Heating and Cooling. Editors: Ruzhu Wang R, Ge T. Thermochemical Heat Storage For Solar Heating And Cooling Systems, 491-522, UK, Woodhead Publishing, 2016.
  • [7] Zbair M, Bennici S. “Survey summary on salts hydrates and composites used in thermochemical sorption heat storage: a review”. Energies, 14(11), 1-33, 2021.
  • [8] Scapino L, Zondag HA, Van Bael J, Diriken J, Rindt CCM. “Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale”. Applied Energy, 190, 920-948, 2017.
  • [9] Yilmaz B, et al. “Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage”. International Journal of Minerals, Metallurgy and Materials, 27(1), 112-118, 2020.
  • [10] Casey SP, Elvins J, Riffat S, Robinson A. “Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage-Selection, synthesis and characterisation of candidate materials”. Energy and Buildings, 84, 412-425, 2014.
  • [11] Liu H, Nagano K, Sugiyama D, Togawa J, Nakamura M. “Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat". International Journal of Heat and Mass Transfer, 65, 471-480, 2013.
  • [12] Brancato V. et al. “Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications”. International Journal of Refrigeration, 105, 92-100, 2019.
  • [13] Aydın D, Utlu Z, Kincay O. “Thermal performance analysis of a solar energy sourced latent heat storage". Renewable and Sustainable Energy Reviews, 50, 1213-1225, 2015.
  • [14] Xu JX, Li TX, Chao JW, Yan TS, Wang RZ. “High energy-density multi-form thermochemical energy storage based on multi-step sorption processes”. Energy, 185, 1131-1142, 2019.
  • [15] Zhao Q, Lin J, Huang H, Wu Q, Shen Y, Xiao Y. “Optimization of thermochemical energy storage systems based on hydrated salts: A review”. Energy and Buildings, 244, 1-34, 2021.
  • [16] Korhammer K, et al. “Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage”. Applied Energy, 162, 1462-1472, 2016.
  • [17] Yu N, Wang RZ, Lu ZS, Wang LW. “Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage”. Chemical Engineering Science, 111, 73-84, 2014.
  • [18] Grekova AD, Gordeeva LG, Aristov YI. “Composite ‘LiCl/vermiculite’ as advanced water sorbent for thermal energy storage”. Applied Thermal Engineering, 124, 1401-1408, 2017.
  • [19] Sutton RJ, Jewell E, Elvins J, Searle JR, Jones P. “Characterising the discharge cycle of CaCl2 and LiNO3 hydrated salts within a vermiculite composite scaffold for thermochemical storage”. Energy and Buildings, 162, 109-120, 2018.
  • [20] Fisher R, Ding Y, Sciacovelli A. “Hydration kinetics of K2CO3, MgCl2 and vermiculite-based composites in view of low-temperature thermochemical energy storage”. Journal of Energy Storage, 38, 1-18, 2021.
  • [21] Aydin D, Casey SP, Riffat S. “The latest advancements on thermochemical heat storage systems”. Renewable and Sustainable Energy Reviews, 41, 356-367, 2015.
  • [22] Chen HJ, Cui Q, Tang Y, Chen XJ, Yao HQ. “Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications”. Applied Thermal Engineering, 28(17-18), 2187-2193, 2008.
  • [23] Karim Nejhad M, Aydin D. “Synthesize and hygro-thermal performance analysis of novel APC-CaCl2 composite sorbent for low-grade heat recovery, storage, and utilization.” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 43(23), 3011-3031, 2021.
  • [24] Donkers PAJ, Sögütoglu LC, Huinink HP, Fischer HR, Adan OCG. “A review of salt hydrates for seasonal heat storage in domestic applications”. Applied Energy, 199, 45-68, 2017.
  • [25] Jarimi H, et al. “Materials characterization of innovative composite materials for solar-driven thermochemical heat storage (THS) suitable for building application”. International Journal of Low-Carbon Technologies, 13(1), 30-42, 2018.
  • [26] Zhao H, Huang T, Liu T, Lei M, Zhang M. “Synthesis of MgCl2/vermiculite and its water vapor adsorption-desorption performance”. International Journal of Energy Research, 45(15), 21375-21389, 2021.
  • [27] Mehrabadi A, Farid M, “New salt hydrate composite for low-grade thermal energy storage”. Energy, 164, 194-203, 2018.
  • [28] Yu Q et al, “Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application”. Renew. Energy, 138, 1087-1095, 2019.
  • [29] Posern K, Kaps C. "Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2". Thermochimica Acta, 502(1-2), 73-76, 2010.
  • [30] Whiting G.T, Grondin D, Stosic S, Bennici S, Auroux A, “Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption". Solar Energy Materials and Solar Cells, 128, 289-295, 2014.
  • [31] Sapienza A, Glaznev IS, Santamaria S, Freni A, Aristov YI. “Adsorption chilling driven by low temperature heat: New adsorbent and cycle optimization”. Applied Thermal Engineering, 32(1), 141-146, 2012.
  • [32] Çolak AB, Aydin D, Al-Ghosini A, Dalkilic AS. “Discharging performance prediction of experimentally tested sorption heat storage materials with machine learning method”. Journal Energy Storage, 56, 1-11, 2022.

Düşük dereceli ısı depolanması amacıyla MgCl2 ve LiNO3 emdirilmiş vermikülit tabanlı kompozit yapıların sentezi ve karakterizasyonu

Year 2024, Volume: 30 Issue: 2, 128 - 135, 30.04.2024

Abstract

Son yıllarda Termokimyasal Isı Depolama (THS) sistemleri ve bu sistemlerin gelişimi açısından büyük öneme sahip olan depolama malzemeleriyle ilgili çalışmalar ilgi görmektedir. Bu çalışma için, sorbent tuzların (MgCl2, LiNO3) gözenekli doğal bir kayaç olan vermikülit (V) içerisine emdirilmesiyle iki farklı kompozit malzeme hazırlanmıştır. Elde edilen kompozit yapıların döngüsel ısı depolama davranışları laboratuvar ortamında oluşturulan termokimyasal ısı değiştirici prototip test düzeneği ile gerçekleştirilen ölçümlerle incelenmiştir. Buna göre, V+MgCl2 kompozitinin tekrar eden döngüler sırasında stabilitesinin ve prototipte gerçekleştirilen ölçümler sonucunda hesaplanan enerji depolama yoğunluğu (Ed) değerinin, DSC analizinden elde edilen sonuçlarla uyumlu olarak, V+LiNO3 kompozitine göre daha yüksek olduğu görülmüştür.

References

  • [1] El Haj Assad M, Alhuyi Nazari M, Rosen MA. Design and Performance Optimization of Renewable Energy Systems. Editors: El Haj Assad M, Rosen MA. Applications of Renewable Energy Sources, 1-15, London, UK, Academic Press, 2021.
  • [2] Dinçer I, Rosen MA. Thermal Energy Storage: Systems and Applications. 2nd ed. New York, USA, John Wiley and Sons, 2010.
  • [3] ElBahloul AA, Zeidan ESB, El-Sharkawy II, Hamed AM. Radwan A. “Recent advances in multistage sorption thermal energy storage systems”. Journal of Energy Storage, 45, 1-21, 2022.
  • [4] Ausfelder F, et al. “Energy storage as part of a secure energy supply”. ChemBioEng Reviews., 4(3), 144-210, 2017.
  • [5] Alva G, Lin Y, Fang G. “An overview of thermal energy storage systems”. Energy, 144, 341-378, 2018.
  • [6] Yan T, Li TX, Wang RZ. Advances in Solar Heating and Cooling. Editors: Ruzhu Wang R, Ge T. Thermochemical Heat Storage For Solar Heating And Cooling Systems, 491-522, UK, Woodhead Publishing, 2016.
  • [7] Zbair M, Bennici S. “Survey summary on salts hydrates and composites used in thermochemical sorption heat storage: a review”. Energies, 14(11), 1-33, 2021.
  • [8] Scapino L, Zondag HA, Van Bael J, Diriken J, Rindt CCM. “Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale”. Applied Energy, 190, 920-948, 2017.
  • [9] Yilmaz B, et al. “Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage”. International Journal of Minerals, Metallurgy and Materials, 27(1), 112-118, 2020.
  • [10] Casey SP, Elvins J, Riffat S, Robinson A. “Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage-Selection, synthesis and characterisation of candidate materials”. Energy and Buildings, 84, 412-425, 2014.
  • [11] Liu H, Nagano K, Sugiyama D, Togawa J, Nakamura M. “Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat". International Journal of Heat and Mass Transfer, 65, 471-480, 2013.
  • [12] Brancato V. et al. “Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications”. International Journal of Refrigeration, 105, 92-100, 2019.
  • [13] Aydın D, Utlu Z, Kincay O. “Thermal performance analysis of a solar energy sourced latent heat storage". Renewable and Sustainable Energy Reviews, 50, 1213-1225, 2015.
  • [14] Xu JX, Li TX, Chao JW, Yan TS, Wang RZ. “High energy-density multi-form thermochemical energy storage based on multi-step sorption processes”. Energy, 185, 1131-1142, 2019.
  • [15] Zhao Q, Lin J, Huang H, Wu Q, Shen Y, Xiao Y. “Optimization of thermochemical energy storage systems based on hydrated salts: A review”. Energy and Buildings, 244, 1-34, 2021.
  • [16] Korhammer K, et al. “Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage”. Applied Energy, 162, 1462-1472, 2016.
  • [17] Yu N, Wang RZ, Lu ZS, Wang LW. “Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage”. Chemical Engineering Science, 111, 73-84, 2014.
  • [18] Grekova AD, Gordeeva LG, Aristov YI. “Composite ‘LiCl/vermiculite’ as advanced water sorbent for thermal energy storage”. Applied Thermal Engineering, 124, 1401-1408, 2017.
  • [19] Sutton RJ, Jewell E, Elvins J, Searle JR, Jones P. “Characterising the discharge cycle of CaCl2 and LiNO3 hydrated salts within a vermiculite composite scaffold for thermochemical storage”. Energy and Buildings, 162, 109-120, 2018.
  • [20] Fisher R, Ding Y, Sciacovelli A. “Hydration kinetics of K2CO3, MgCl2 and vermiculite-based composites in view of low-temperature thermochemical energy storage”. Journal of Energy Storage, 38, 1-18, 2021.
  • [21] Aydin D, Casey SP, Riffat S. “The latest advancements on thermochemical heat storage systems”. Renewable and Sustainable Energy Reviews, 41, 356-367, 2015.
  • [22] Chen HJ, Cui Q, Tang Y, Chen XJ, Yao HQ. “Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications”. Applied Thermal Engineering, 28(17-18), 2187-2193, 2008.
  • [23] Karim Nejhad M, Aydin D. “Synthesize and hygro-thermal performance analysis of novel APC-CaCl2 composite sorbent for low-grade heat recovery, storage, and utilization.” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 43(23), 3011-3031, 2021.
  • [24] Donkers PAJ, Sögütoglu LC, Huinink HP, Fischer HR, Adan OCG. “A review of salt hydrates for seasonal heat storage in domestic applications”. Applied Energy, 199, 45-68, 2017.
  • [25] Jarimi H, et al. “Materials characterization of innovative composite materials for solar-driven thermochemical heat storage (THS) suitable for building application”. International Journal of Low-Carbon Technologies, 13(1), 30-42, 2018.
  • [26] Zhao H, Huang T, Liu T, Lei M, Zhang M. “Synthesis of MgCl2/vermiculite and its water vapor adsorption-desorption performance”. International Journal of Energy Research, 45(15), 21375-21389, 2021.
  • [27] Mehrabadi A, Farid M, “New salt hydrate composite for low-grade thermal energy storage”. Energy, 164, 194-203, 2018.
  • [28] Yu Q et al, “Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application”. Renew. Energy, 138, 1087-1095, 2019.
  • [29] Posern K, Kaps C. "Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2". Thermochimica Acta, 502(1-2), 73-76, 2010.
  • [30] Whiting G.T, Grondin D, Stosic S, Bennici S, Auroux A, “Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption". Solar Energy Materials and Solar Cells, 128, 289-295, 2014.
  • [31] Sapienza A, Glaznev IS, Santamaria S, Freni A, Aristov YI. “Adsorption chilling driven by low temperature heat: New adsorbent and cycle optimization”. Applied Thermal Engineering, 32(1), 141-146, 2012.
  • [32] Çolak AB, Aydin D, Al-Ghosini A, Dalkilic AS. “Discharging performance prediction of experimentally tested sorption heat storage materials with machine learning method”. Journal Energy Storage, 56, 1-11, 2022.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Esra Ayan This is me

Behiye Yüksel

Gökhan Orhan

Publication Date April 30, 2024
Published in Issue Year 2024 Volume: 30 Issue: 2

Cite

APA Ayan, E., Yüksel, B., & Orhan, G. (2024). Düşük dereceli ısı depolanması amacıyla MgCl2 ve LiNO3 emdirilmiş vermikülit tabanlı kompozit yapıların sentezi ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 128-135.
AMA Ayan E, Yüksel B, Orhan G. Düşük dereceli ısı depolanması amacıyla MgCl2 ve LiNO3 emdirilmiş vermikülit tabanlı kompozit yapıların sentezi ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. April 2024;30(2):128-135.
Chicago Ayan, Esra, Behiye Yüksel, and Gökhan Orhan. “Düşük Dereceli ısı Depolanması amacıyla MgCl2 Ve LiNO3 Emdirilmiş vermikülit Tabanlı Kompozit yapıların Sentezi Ve Karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 2 (April 2024): 128-35.
EndNote Ayan E, Yüksel B, Orhan G (April 1, 2024) Düşük dereceli ısı depolanması amacıyla MgCl2 ve LiNO3 emdirilmiş vermikülit tabanlı kompozit yapıların sentezi ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 2 128–135.
IEEE E. Ayan, B. Yüksel, and G. Orhan, “Düşük dereceli ısı depolanması amacıyla MgCl2 ve LiNO3 emdirilmiş vermikülit tabanlı kompozit yapıların sentezi ve karakterizasyonu”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, pp. 128–135, 2024.
ISNAD Ayan, Esra et al. “Düşük Dereceli ısı Depolanması amacıyla MgCl2 Ve LiNO3 Emdirilmiş vermikülit Tabanlı Kompozit yapıların Sentezi Ve Karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/2 (April 2024), 128-135.
JAMA Ayan E, Yüksel B, Orhan G. Düşük dereceli ısı depolanması amacıyla MgCl2 ve LiNO3 emdirilmiş vermikülit tabanlı kompozit yapıların sentezi ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:128–135.
MLA Ayan, Esra et al. “Düşük Dereceli ısı Depolanması amacıyla MgCl2 Ve LiNO3 Emdirilmiş vermikülit Tabanlı Kompozit yapıların Sentezi Ve Karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, 2024, pp. 128-35.
Vancouver Ayan E, Yüksel B, Orhan G. Düşük dereceli ısı depolanması amacıyla MgCl2 ve LiNO3 emdirilmiş vermikülit tabanlı kompozit yapıların sentezi ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(2):128-35.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif