Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster

Causes, effects and analysis of Supraharmonics

Yıl 2024, Cilt: 30 Sayı: 2, 163 - 173, 30.04.2024

Öz

In power systems, disturbances between 2 kHz and 150 kHz are called “Supraharmonics” (SH). Although supraharmonics are not a new concept; It has only attracted the attention of researchers, engineers and manufacturers of end-user devices in recent years. Electromagnetic compatibility (EMC) tests, which are required for placing electrical/electronic devices on the market, require the measurement of harmonic currents (50 Hz-2000 Hz) and the measurement of conducted emission values. However, studies and research in the supraharmonic range are quite limited. As systems using semi-conductor technologies with high power and switching in the kHz range such as photovoltaic energy systems, electric vehicle fast charging stations, high speed digital communication systems become widespread, supraharmonics have also begun to be effective in power distribution systems and cause problems. Today, the struggle against high-frequency disturbances caused by the increased use of electrical and electronic devices, switched power electronic devices and power line communication (PLC) devices is even more prominent. Research conducted in recent years have revealed that disturbances between 2 kHz and 150 kHz cause measurement errors in smart meters, audible noise, malfunctions and performance reductions in electrical devices. In this study, sources of supraharmonics, the problems they cause in devices and networks, measurement methods of supraharmonics and related standards, supraharmonic simulation of sample devices and analysis by measurement are given. Measurements and simulation results show that focusing only on EMC requirements in device designs can cause supraharmonics to be neglected, thus negatively affecting the network and other devices.

Kaynakça

  • [1] Kürker F, Taşaltın R. “Elektrik tesislerinde harmoniklerin meydana getirdiği kayıpların analizi”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 3(5), 21-38, 2016.
  • [2] Bollen M, Olofsson M, Larsson A, Rönnberg S,Lundmark M. "Standards for supraharmonics (2 to 150 kHz)". IEEE Electromagnetic Compatibility Magazine, 3(1), 114-119, 2014.
  • [3] Rönnberg S, Bollen MHJ, Amaris H, Chang WG, Gu YHI, Kocewiak ŁH, Meyer J, Olofsson M, Ribeiro PF, Desmet J. “On waveform distortion in the frequency range of 2 kHz-150 kHz-Review and research challenges”. Electric Power Systems Research, 150, 1-10, 2017.
  • [4] Slangen T, Wijk T, Cuk V, Cobben S. “The propagation and interaction of supraharmonics from electric vehicle chargers in a low-voltage grid”. Energies, 13(15), 1-20, 2020.
  • [5] Mariscotti A. “Harmonic and supraharmonic emissions of plug-in electric vehicle chargers.” Smart Cities, 5(2), 496-522, 2022.
  • [6] Streubel T, Kattmann C, Eisenmann A, Rudion K. “Characterization of supraharmonic emission from three different electric vehicle charging infrastructures in time and frequency domain”. Energies, 15(2), 1-19, 2022.
  • [7] Blum J. “Evaluating Supraharmonics up to 150 kHz in Electric Vehicles at the University of Applied Sciences Bingen”. https://powerquality.blog/2021/11/05/evaluating-supraharmonics-up-to-150-khz-in-electric-vehicles-at-the-university-of-applied-sciences-bingen/ (07.06.2022).
  • [8] Yalçın T. Akıllı Şebekelerde Güç Kalitesi Bozukluklarının İşaret İşleme Yöntemleriyle Tanısı. Doktora Tezi, Samsun Üniversitesi, Samsun, Türkiye, 2019.
  • [9] langen, TMH, van Wijk T, Cuk V, Cobben JFG. “The harmonic and supraharmonic emission of battery electric vehicles in the Netherlands”. Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies, Istanbul, Turkey, 7-9 September 2020.
  • [10] Espin-Delgado A, Ronnberg S, Letha SS, Bollen M. “Diagnosis of supraharmonics-related problems based on the effects on electrical equipment”. Electric Power Systems Research, 2021. https://doi.org/10.1016/j.epsr.2021.107179.
  • [11] International Electrotechnical Committee. “Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A Per Phase)”. Geneva, Switzerland, IEC 61000-3-2, 2019.
  • [12] International Electrotechnical Committee. “Study Report on Electromagnetic Interference between Electrical Equipment/Systems in the Frequency Range Below 150 kHz”. Geneva, Switzerland, PD CLC/TR 50627, 2015.
  • [13] Sutaria J, Ahmed KMU, Rönnberg S, Bollen MHJ. "Propagation of Supraharmonics through EMI Filters with Varying Loads". Nordic Workshop on Power and Industrial Electronics, Narvik, Norway, 25-27 September. 2019.
  • [14] Khokhlov V, Meyer J, Grevener A, Busatto T, Rönnberg S. “Comparison of measurement methods for the frequency range 2-150 kHz (supraharmonics) based on the present standards framework”. IEEE Access, 8, 77618-77630, 2020.
  • [15] Arechavaleta M, Halpin SM, Birchfield A, Pittman W, Griffin WE, Mitchell M. “Potential impacts of 9-150 kHz harmonic emissions on smart grid communications in the United States”. The Fifth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, Rome, Italy, 24-29 May 2015.
  • [16] Yalcin, T, Ozdemir M, Kostyla P, Leonowicz, Z. "Investigation of supra-harmonics through signal processing methods in smart grids". Transactions on Environment and Electrical Engineering, 2(2), 80-85, 2017.
  • [17] Sakar S. Modelling and Interference Analysis of AC-DC Converters for Immunity to Voltage Disturbances upto 150 kHz. PhD Thesis, Lulea University of Technology, Luleå, Sweden, 2021.
  • [18] Ravindran V, Sakar S, Ronnberg S, Bollen MHJ. “Characterization of the impact of PV and EV induced voltage variations on LED lamps in a low voltage installation”. Electric Power Systems Research, 2020. https://doi.org/10.1016/j.epsr.2020.106352.
  • [19] Carpinelli G, Bracale A, Varilone P, Sikorski T, Kostyla P, Leonowicz Z. “A new advanced method for an accurate assessment of harmonic and supraharmonic distortion in power system waveforms”. IEEE Access, 9, 88685-88698, 2021.
  • [20] International Electrotechnical Committee. “JWG 6”. https://www.iec.ch/ords/f?p=103:14:11890998869728::::FSP_ORG_ID,FSP_LANG_ID:22022,25 (11.07.2022).
  • [21] European Electrotechnical Standardisation Committee. “Signalling on low-voltage electrical installations in the frequency range 3 kHz to 148,5 kHz-Part 1: General requirements, frequency bands and electromagnetic disturbances”. Brussels, Belgium, EN 50065-1, 2011.
  • [22] European Electrotechnical Standardisation Committee. “Voltage characteristics of electricity supplied by public electricity networks”. Brussels, Belgium, EN 50160, 2019.
  • [23] International Electrotechnical Committee. “Power Quality Measurement Methods”. Geneva, Switzerland, IEC 61000-4-30, 2021.
  • [24] Mendes TM, Duque CA, da Silva LRM, Ferreira DD, Meyer J, Ribeiro PF. “Comparative analysis of the measurement methods for the supraharmonic range”. International Journal of Electrical Power&Energy Systems, 2020. https://doi.org/10.1016/j.ijepes.2019.105801.
  • [25] Kalair A, Abas N, Kalair AR, Saleem Z, Khan N. ‘‘Review of harmonic analysis, modeling and mitigation techniques.’’ Renewable and Sustainable Energy Reviews, 78, 1152-1187, 2017.
  • [26] International Electrotechnical Committee. “Requirements for Household Appliances, Electric Tools and Similar Apparatus-Part 1: Emission”. Geneva, Switzerland, CISPR 14-1, 2020.
  • [27] International Electrotechnical Committee. “Limits and Methods of Measurement of Radio Disturbance Characteristics of Electrical Lighting and Similar Equipment“. Geneva, Switzerland, CISPR 15, 2018.
  • [28] Klatt M, Stiegler R, Meyer J, Schegner P. “Generic frequency-domain model for the emission of PWM-based power converters in the frequency rangefrom 2 to 150 kHz”. IET Generaiton, Transmission and Distribution, 13(24), 5441-5604, 2019.
  • [29] Sandrolini, L. Mariscotti A. “Waveform and spectral characteristics of supraharmonic unsymmetrical conducted EMI of switched-mode power supplies”. Electronics, 11, 1-17, 2022.
  • [30] Larsson EOA, Bollen MHJ. "Measurement result from 1 to 48 fluorescent lamps in the frequency range 2 to 150 kHz". Proceedings of 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 26-29 September, 2010.
  • [31] Espin-Delgado A, Rönnberg S, Busatto T, Ravindran V, Bollen MHJ. “Summation law for supraharmonic currents (2-150 kHz) in low-voltage installations”. Electric Power Systems Research, 2020. https://doi.org/10.1016/j.epsr.2020.106325.
  • [32] International Electrotechnical Committee. “General Guide on Harmonics and Interharmonics Measurements and Instrumentation, for Power Supply Systems and Equipment Connected Thereto”. Geneva, Switzerland, IEC 61000-4-7, 2009.
  • [33] International Electrotechnical Committee. “Methods of Measurement of Disturbances and Immunity-Conducted Disturbance Measurements”. Geneva, Switzerland, CISPR 16-2-1, 2017.
  • [34] International Electrotechnical Committee. “Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods Part 1-1: Radio Disturbance and Immunity Measuring Apparatus-Measuring Apparatus”. Geneva, Switzerland, CISPR 16-1-1, 2019.
  • [35] Verzele P, Knockaert J, Desmet J. “Appropriate methods to analyse Power Conversion Harmonics”. International Conference on Renewable Energies and Power Quality, Bilbao, Spain, 20-22 March 2013.
  • [36] International Electrotechnical Committee. “Power Electronics Systems and Equipment-Operation Conditions and Characteristics of Active Infeed Converter (AIC) Applications Including Design Recommendations for Their Emission Values Below 150 kHz”. Geneva, Switzerland, IEC TS 62578, 2015.
  • [37] Larsson, A. On High Frequency Distortion in Low-Voltage Power Systems. Ph.D. Thesis, Luleå University of Technology, Lulea, Sweden, 2011.
  • [38] Yalcin T, Özdemir M, Kostylaand P, Leonowicz Z. "Analysis of supra-harmonics in smartgrids". IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Milan, Italy, 6-9 June 2017.
  • [39] International Electrotechnical Committee. “LVDC Systems-Assessment of Standard Voltages and Power Quality Requirements”. Geneva, Switzerland, IEC TR 63282, 2020.
  • [40] International Electrotechnical Committee. “Environment-Compatibility Levels in Industrial Plants for Low-Frequency Conducted Disturbances”. Geneva, Switzerland, IEC 61000-2-4, 2002.

Supraharmoniklerin nedenleri, etkileri ve analizi

Yıl 2024, Cilt: 30 Sayı: 2, 163 - 173, 30.04.2024

Öz

Güç sistemlerinde, 2 kHz ile 150 kHz aralığındaki bozulmalar “Supraharmonikler” (SH) olarak adlandırılmaktadır. Supraharmonikler yeni bir kavram olmamakla birlikte; araştırmacılar, mühendisler ve son kullanıcıya yönelik cihaz üreticilerinin dikkatini ancak son yıllarda çekmektedir. Elektrikli/elektronik cihazların piyasaya arz edilebilmesi için gerekli olan elektromanyetik uyumluluk (EMC) testleri, harmonik akımların ölçülmesini (50 Hz-2000 Hz) ve iletimle yayınım değerlerinin ölçülmesini zorunlu kılmaktadır. Ancak supraharmonik aralığındaki çalışmalar ve araştırmalar oldukça sınırlıdır. Fotovoltaik enerji sistemleri, elektrikli araç hızlı şarj istasyonları, yüksek hızlı dijital haberleşme sistemleri gibi yüksek güçlü ve kHz mertebelerinde anahtarlama yapan yarı-iletken teknolojilerini kullanan sistemler yaygınlaştıkça, supraharmonikler de güç dağıtım sistemlerinde etkin olmaya ve sorunlara yol açmaya başlamışlardır. Elektrikli ve elektronik cihazlar, anahtarlamalı güç elektroniği cihazları ve güç hattından haberleşebilen (PLC) cihazların daha fazla kullanımı nedeniyle oluşan yüksek frekanslı bozucu etkilerle mücadele günümüzde daha da öne çıkmaktadır. Son yıllarda yapılan araştırmalarda; 2 kHz ile 150 kHz arasında ortaya çıkan bozucu etkilerin akıllı sayaçlarda ölçüm hatalarına, elektrikle çalışan cihazlarda ise duyulabilen gürültüye, arızalara ve performans azalmalarına yol açtığı ortaya konmuştur. Bu çalışmada, supraharmoniklerin kaynaklarına, cihazlarda ve şebekelerde yol açtığı sorunlara, supraharmoniklerin ölçüm yöntemleri ve ilgili standartlara, seçilen cihazların supraharmonik benzetimine ve ölçüm yoluyla analizlerine yer verilmektedir. Ölçümler ve benzetim sonuçları göstermektedir ki, cihaz tasarımlarında yalnızca EMC gereksinimlerine odaklanmak, supraharmonik bileşenlerinin ihmal edilmesine, dolayısıyla şebekede ve diğer cihazlarda olumsuz etkilenmelere neden olabilmektedir.

Kaynakça

  • [1] Kürker F, Taşaltın R. “Elektrik tesislerinde harmoniklerin meydana getirdiği kayıpların analizi”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 3(5), 21-38, 2016.
  • [2] Bollen M, Olofsson M, Larsson A, Rönnberg S,Lundmark M. "Standards for supraharmonics (2 to 150 kHz)". IEEE Electromagnetic Compatibility Magazine, 3(1), 114-119, 2014.
  • [3] Rönnberg S, Bollen MHJ, Amaris H, Chang WG, Gu YHI, Kocewiak ŁH, Meyer J, Olofsson M, Ribeiro PF, Desmet J. “On waveform distortion in the frequency range of 2 kHz-150 kHz-Review and research challenges”. Electric Power Systems Research, 150, 1-10, 2017.
  • [4] Slangen T, Wijk T, Cuk V, Cobben S. “The propagation and interaction of supraharmonics from electric vehicle chargers in a low-voltage grid”. Energies, 13(15), 1-20, 2020.
  • [5] Mariscotti A. “Harmonic and supraharmonic emissions of plug-in electric vehicle chargers.” Smart Cities, 5(2), 496-522, 2022.
  • [6] Streubel T, Kattmann C, Eisenmann A, Rudion K. “Characterization of supraharmonic emission from three different electric vehicle charging infrastructures in time and frequency domain”. Energies, 15(2), 1-19, 2022.
  • [7] Blum J. “Evaluating Supraharmonics up to 150 kHz in Electric Vehicles at the University of Applied Sciences Bingen”. https://powerquality.blog/2021/11/05/evaluating-supraharmonics-up-to-150-khz-in-electric-vehicles-at-the-university-of-applied-sciences-bingen/ (07.06.2022).
  • [8] Yalçın T. Akıllı Şebekelerde Güç Kalitesi Bozukluklarının İşaret İşleme Yöntemleriyle Tanısı. Doktora Tezi, Samsun Üniversitesi, Samsun, Türkiye, 2019.
  • [9] langen, TMH, van Wijk T, Cuk V, Cobben JFG. “The harmonic and supraharmonic emission of battery electric vehicles in the Netherlands”. Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies, Istanbul, Turkey, 7-9 September 2020.
  • [10] Espin-Delgado A, Ronnberg S, Letha SS, Bollen M. “Diagnosis of supraharmonics-related problems based on the effects on electrical equipment”. Electric Power Systems Research, 2021. https://doi.org/10.1016/j.epsr.2021.107179.
  • [11] International Electrotechnical Committee. “Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A Per Phase)”. Geneva, Switzerland, IEC 61000-3-2, 2019.
  • [12] International Electrotechnical Committee. “Study Report on Electromagnetic Interference between Electrical Equipment/Systems in the Frequency Range Below 150 kHz”. Geneva, Switzerland, PD CLC/TR 50627, 2015.
  • [13] Sutaria J, Ahmed KMU, Rönnberg S, Bollen MHJ. "Propagation of Supraharmonics through EMI Filters with Varying Loads". Nordic Workshop on Power and Industrial Electronics, Narvik, Norway, 25-27 September. 2019.
  • [14] Khokhlov V, Meyer J, Grevener A, Busatto T, Rönnberg S. “Comparison of measurement methods for the frequency range 2-150 kHz (supraharmonics) based on the present standards framework”. IEEE Access, 8, 77618-77630, 2020.
  • [15] Arechavaleta M, Halpin SM, Birchfield A, Pittman W, Griffin WE, Mitchell M. “Potential impacts of 9-150 kHz harmonic emissions on smart grid communications in the United States”. The Fifth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, Rome, Italy, 24-29 May 2015.
  • [16] Yalcin, T, Ozdemir M, Kostyla P, Leonowicz, Z. "Investigation of supra-harmonics through signal processing methods in smart grids". Transactions on Environment and Electrical Engineering, 2(2), 80-85, 2017.
  • [17] Sakar S. Modelling and Interference Analysis of AC-DC Converters for Immunity to Voltage Disturbances upto 150 kHz. PhD Thesis, Lulea University of Technology, Luleå, Sweden, 2021.
  • [18] Ravindran V, Sakar S, Ronnberg S, Bollen MHJ. “Characterization of the impact of PV and EV induced voltage variations on LED lamps in a low voltage installation”. Electric Power Systems Research, 2020. https://doi.org/10.1016/j.epsr.2020.106352.
  • [19] Carpinelli G, Bracale A, Varilone P, Sikorski T, Kostyla P, Leonowicz Z. “A new advanced method for an accurate assessment of harmonic and supraharmonic distortion in power system waveforms”. IEEE Access, 9, 88685-88698, 2021.
  • [20] International Electrotechnical Committee. “JWG 6”. https://www.iec.ch/ords/f?p=103:14:11890998869728::::FSP_ORG_ID,FSP_LANG_ID:22022,25 (11.07.2022).
  • [21] European Electrotechnical Standardisation Committee. “Signalling on low-voltage electrical installations in the frequency range 3 kHz to 148,5 kHz-Part 1: General requirements, frequency bands and electromagnetic disturbances”. Brussels, Belgium, EN 50065-1, 2011.
  • [22] European Electrotechnical Standardisation Committee. “Voltage characteristics of electricity supplied by public electricity networks”. Brussels, Belgium, EN 50160, 2019.
  • [23] International Electrotechnical Committee. “Power Quality Measurement Methods”. Geneva, Switzerland, IEC 61000-4-30, 2021.
  • [24] Mendes TM, Duque CA, da Silva LRM, Ferreira DD, Meyer J, Ribeiro PF. “Comparative analysis of the measurement methods for the supraharmonic range”. International Journal of Electrical Power&Energy Systems, 2020. https://doi.org/10.1016/j.ijepes.2019.105801.
  • [25] Kalair A, Abas N, Kalair AR, Saleem Z, Khan N. ‘‘Review of harmonic analysis, modeling and mitigation techniques.’’ Renewable and Sustainable Energy Reviews, 78, 1152-1187, 2017.
  • [26] International Electrotechnical Committee. “Requirements for Household Appliances, Electric Tools and Similar Apparatus-Part 1: Emission”. Geneva, Switzerland, CISPR 14-1, 2020.
  • [27] International Electrotechnical Committee. “Limits and Methods of Measurement of Radio Disturbance Characteristics of Electrical Lighting and Similar Equipment“. Geneva, Switzerland, CISPR 15, 2018.
  • [28] Klatt M, Stiegler R, Meyer J, Schegner P. “Generic frequency-domain model for the emission of PWM-based power converters in the frequency rangefrom 2 to 150 kHz”. IET Generaiton, Transmission and Distribution, 13(24), 5441-5604, 2019.
  • [29] Sandrolini, L. Mariscotti A. “Waveform and spectral characteristics of supraharmonic unsymmetrical conducted EMI of switched-mode power supplies”. Electronics, 11, 1-17, 2022.
  • [30] Larsson EOA, Bollen MHJ. "Measurement result from 1 to 48 fluorescent lamps in the frequency range 2 to 150 kHz". Proceedings of 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 26-29 September, 2010.
  • [31] Espin-Delgado A, Rönnberg S, Busatto T, Ravindran V, Bollen MHJ. “Summation law for supraharmonic currents (2-150 kHz) in low-voltage installations”. Electric Power Systems Research, 2020. https://doi.org/10.1016/j.epsr.2020.106325.
  • [32] International Electrotechnical Committee. “General Guide on Harmonics and Interharmonics Measurements and Instrumentation, for Power Supply Systems and Equipment Connected Thereto”. Geneva, Switzerland, IEC 61000-4-7, 2009.
  • [33] International Electrotechnical Committee. “Methods of Measurement of Disturbances and Immunity-Conducted Disturbance Measurements”. Geneva, Switzerland, CISPR 16-2-1, 2017.
  • [34] International Electrotechnical Committee. “Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods Part 1-1: Radio Disturbance and Immunity Measuring Apparatus-Measuring Apparatus”. Geneva, Switzerland, CISPR 16-1-1, 2019.
  • [35] Verzele P, Knockaert J, Desmet J. “Appropriate methods to analyse Power Conversion Harmonics”. International Conference on Renewable Energies and Power Quality, Bilbao, Spain, 20-22 March 2013.
  • [36] International Electrotechnical Committee. “Power Electronics Systems and Equipment-Operation Conditions and Characteristics of Active Infeed Converter (AIC) Applications Including Design Recommendations for Their Emission Values Below 150 kHz”. Geneva, Switzerland, IEC TS 62578, 2015.
  • [37] Larsson, A. On High Frequency Distortion in Low-Voltage Power Systems. Ph.D. Thesis, Luleå University of Technology, Lulea, Sweden, 2011.
  • [38] Yalcin T, Özdemir M, Kostylaand P, Leonowicz Z. "Analysis of supra-harmonics in smartgrids". IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Milan, Italy, 6-9 June 2017.
  • [39] International Electrotechnical Committee. “LVDC Systems-Assessment of Standard Voltages and Power Quality Requirements”. Geneva, Switzerland, IEC TR 63282, 2020.
  • [40] International Electrotechnical Committee. “Environment-Compatibility Levels in Industrial Plants for Low-Frequency Conducted Disturbances”. Geneva, Switzerland, IEC 61000-2-4, 2002.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Serdar Büyük

Engin Özdemir

Yayımlanma Tarihi 30 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 2

Kaynak Göster

APA Büyük, S., & Özdemir, E. (2024). Supraharmoniklerin nedenleri, etkileri ve analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 163-173.
AMA Büyük S, Özdemir E. Supraharmoniklerin nedenleri, etkileri ve analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2024;30(2):163-173.
Chicago Büyük, Serdar, ve Engin Özdemir. “Supraharmoniklerin Nedenleri, Etkileri Ve Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 2 (Nisan 2024): 163-73.
EndNote Büyük S, Özdemir E (01 Nisan 2024) Supraharmoniklerin nedenleri, etkileri ve analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 2 163–173.
IEEE S. Büyük ve E. Özdemir, “Supraharmoniklerin nedenleri, etkileri ve analizi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 2, ss. 163–173, 2024.
ISNAD Büyük, Serdar - Özdemir, Engin. “Supraharmoniklerin Nedenleri, Etkileri Ve Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/2 (Nisan 2024), 163-173.
JAMA Büyük S, Özdemir E. Supraharmoniklerin nedenleri, etkileri ve analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:163–173.
MLA Büyük, Serdar ve Engin Özdemir. “Supraharmoniklerin Nedenleri, Etkileri Ve Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 2, 2024, ss. 163-7.
Vancouver Büyük S, Özdemir E. Supraharmoniklerin nedenleri, etkileri ve analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(2):163-7.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.