Research Article
BibTex RIS Cite

Copy-Move forgery detection using EOA, DWT and DCT

Year 2024, Volume: 30 Issue: 2, 222 - 227, 30.04.2024

Abstract

Copy-move forgery (CMF) is a new challenge because it reduces the accuracy of image forgery detection. In CMFD, we have selected and pasted similar points. The proposed method based on the Equilibrium Optimization Algorithm (EOA), Discrete Wavelet Transform (DWT), and Discrete Cosine Transform (DCT) helps image forgery detection. The method includes feature detection, image segmentation, and detection of forgery areas using the EOA, DWT, and DCT. In the first step, the image converts to a grayscale. Then, with the help of a discrete cosine transform algorithm, it is taken to the signal domain. With the help of discrete wavelet transform, its appropriate properties are introduced. In the next step, the image is divided into blocks of equal size. Then the similarity search is performed with the help of an equilibrium optimization algorithm and a suitable proportion function. Copy-move forgery detection using the Equilibrium Optimization Algorithm can find areas of forgery with a precision of about 86.21% for the IMD data set and about 83.98% for the MICC-F600 data set.

References

  • [1] Abd Warif NB, Wahab AW, Idris MY, Ramli R, Salleh R, Shamshirband S, Choo KK. “Copy-move forgery detection: survey, challenges and future directions”. Journal of Network and Computer Applications, 75, 259-78, 2016.
  • [2] Ulutas G, Ustubioglu B, Ulutas M, Nabiyev V. Video forgery detection method based on local difference binary. Pamukkale University Journal of Engineering Sciences. 26(5):983-92, 2020.
  • [3] Liu K, Lu W, Lin C, Huang X, Liu X, Yeung Y, Xue, Y. “Copy move forgery detection based on keypoint and patch match”. Multimedia Tools and Applications, 78(22), 31387-31413, 2019.
  • [4] Amiri E, Mosallanejad A, Sheikhahmadi A. “Copy-Move forgery detection by an optimal keypoint on SIFT (OKSIFT) Method”. Journal of Computer & Robotics, 14(2), 11-19, 2021.
  • [5] Tahaoğlu G, Ulutas G. “Copy-move forgery detection and localization with hybrid neural network approach”. Pamukkale University Journal of Engineering Sciences, 28(5), 748-760, 2022.
  • [6] Deep Kaur C, Kanwal N. “An analysis of image forgery detection techniques”. Statistics, Optimization & Information Computing, 7(2), 486-500, 2019.
  • [7] Roy A, Dixit R, Naskar R, Chakraborty RS. “Copy-Move forgery detection in digital images-survey and accuracy estimation metrics”. In Digital Image Forensics, 27-56, Springer, 2020.
  • [8] Alberry HA, Hegazy AA, Salama GI. “A fast SIFT based method for copy move forgery detection”. Future Computing and Informatics Journal, 3(2), 159-165, 2018.
  • [9] Sun Y, Ni R, Zhao Y. “Nonoverlapping blocks based copy-move forgery detection”. Security and Communication Networks, 2018.
  • [10] Teerakanok, Songpon, Tetsutaro Uehara. "Copy-move forgery detection: A state-of-the-art technical review and analysis". IEEE Access, 7, 40550-40568, 2019.
  • [11] Hilal A, Chantaf S. “Uncovering copy–move traces using principal component analysis, discrete cosine transform and Gabor filter”. Analog Integrated Circuits and Signal Processing, 96(2), 283-291, 2018.
  • [12] Lee JC. “Copy-move image forgery detection based on Gabor magnitude”. Journal of Visual Communication and Image Representation, 31, 320-334, 2015.
  • [13] Vega EAA, Fernández EG, Orozco ALS, Villalba LJG. “Copy-move forgery detection technique based on discrete cosine transform blocks features”. Neural Computing and Applications, 33(10), 4713-4727, 2021.
  • [14] Lowe DG. “Object Recognition from Local Scale-Invariant Features”. International Journal of Computer Vision, 60(2), 91-110, 2004.
  • [15] Amerini I, Ballan L, Caldelli R, Del Bimbo A, Del Tongo L, & Serra G. “Copy-move forgery detection and localization by means of robust clustering with J-Linkage”. Signal Processing: Image Communication, 28(6), 659-669, 2013.
  • [16] Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G. “A sift-based forensic method for copy–move attack detection and transformation recovery”. IEEE Transactions on Information Forensics and Security, 6(3), 1099-1110, 2011.
  • [17] Üstün O. “Determination of activation functions in a feedforward neural network by using genetic algorithm”. Pamukkale University Journal of Engineering Sciences, 15(3), 395-403, 2009.
  • [18] Başkan Ö, Ceylan H. “Differential evolution algorithm based solution approaches for solving transportation network design problems”. Pamukkale University Journal of Engineering Sciences, 20(9), 324-31, 2014.
  • [19] Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S. “Equilibrium optimizer: a novel optimization algorithm”. Knowledge-Based Systems, 191, 1-21, 2020.
  • [20] Shaheen AM, Elsayed AM, El-Sehiemy RA, Abdelaziz AY. “Equilibrium optimization algorithm for network reconfiguration and distributed generation allocation in power systems”. Applied Soft Computing, 98, 1-19, 2021.
  • [21] Şahin Y, Ulutaş G, İmamoğlu M. “A fragile zero watermarking schema to check integrity of relational databases based on discrete cosines transform”. Pamukkale University Journal of Engineering Sciences, 24(5), 887-897, 2018.
  • [22] Yildiz K, Buldu A. “Wavelet transform and principal component analysis in fabric defect detection and classification”. Pamukkale University Journal of Engineering Sciences, 23(5), 622-627, 2017.
  • [23] Amiri E, Mosallanejad A, Sheikhahmad, A. “Copy-move forgery detection using a bat algorithm with mutation”. International Journal of Nonlinear Analysis and Applications, 12(Special Issue), 1947-1955, 2021.
  • [24] Ardizzone E, Bruno A, Mazzola G. “Copy–move forgery detection by matching triangles of keypoints”. IEEE Transactions on Information Forensics and Security, 10(10), 2084-2094, 2015.
  • [25] Lyu Q, Luo J, Liu K, Yin X, Liu J, Lu W. “Copy Move Forgery Detection based on double matching”. Journal of Visual Communication and Image Representation, 76, 1-14, 2021.
  • [26] Yang F, Li J, Lu W, Weng J. “Copy-move forgery detection based on hybrid features”. Engineering Applications of Artificial Intelligence, 59, 73-83, 2017.
  • [27] Lin C, Lu W, Huang X, Liu K, Sun W, Lin H, Tan Z. “Copy-move forgery detection using combined features and transitive matching”. Multimedia Tools and Applications, 78(21), 30081-30096, 2019.
  • [28] Emam M, Han Q, Niu X. “PCET based copy-move forgery detection in images under geometric transforms”. Multimedia Tools and Applications, 75(18), 11513-11527, 2016.
  • [29] Silva E, Carvalho T, Ferreira A, Rocha A. “Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes”. Journal of Visual Communication and Image Representation, 29, 16-32, 2015.
  • [30] Deng J, Yang J, Weng S, Gu G, Li Z. “Copy-move forgery detection robust to various transformation and degradation attacks”. KSII Transactions on Internet and Information Systems (TIIS), 12(9), 4467-4486, 2018.
  • [31] Dhiman G, Vijay K. "Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications". Advances in Engineering Software, 114, 48-70, 2017.
  • [32] Tralic D, Zupancic I, Grgic S, Grgic M. "CoMoFoD-New database for copy-move forgery detection". 55th International Symposium ELMAR-2013, Zadar, Croatla, 25-27 September 2013.

EOA, DWT ve DCT kullanarak kopyalama-taşıma sahtecilik tespiti

Year 2024, Volume: 30 Issue: 2, 222 - 227, 30.04.2024

Abstract

Kopyala-taşı sahteciliği (CMF), görüntü sahteciliği tespitinin doğruluğunu azalttığı için yeni bir zorluktur. CMFD'de benzer noktaları seçip yapıştırdık. Denge Optimizasyon Algoritması (EOA), Ayrık Dalgacık Dönüşümü (DWT) ve Ayrık Kosinüs Dönüşümü (DCT) tabanlı önerilen yöntem, görüntü sahteciliğini tespit etmeye yardımcı olur. Yöntem, özellik tespiti, görüntü segmentasyonu ve EOA, DWT ve DCT kullanılarak sahte alanların tespitini içerir. İlk adımda, görüntü gri tonlamaya dönüştürülür. Daha sonra ayrık bir kosinüs dönüşüm algoritması yardımıyla sinyal alanına alınır. Ayrık dalgacık dönüşümü yardımıyla uygun özellikleri tanıtılır. Bir sonraki adımda, görüntü eşit büyüklükte bloklara bölünür. Daha sonra bir denge optimizasyon algoritması ve uygun bir orantı fonksiyonu yardımıyla benzerlik araştırması yapılır. Denge Optimizasyon Algoritması kullanılarak kopyala-taşı sahtecilik tespiti, IMD veri seti için yaklaşık %86.21 ve MICC-F600 veri seti için yaklaşık %83.98 hassasiyetle sahtecilik alanlarını bulabilir.

References

  • [1] Abd Warif NB, Wahab AW, Idris MY, Ramli R, Salleh R, Shamshirband S, Choo KK. “Copy-move forgery detection: survey, challenges and future directions”. Journal of Network and Computer Applications, 75, 259-78, 2016.
  • [2] Ulutas G, Ustubioglu B, Ulutas M, Nabiyev V. Video forgery detection method based on local difference binary. Pamukkale University Journal of Engineering Sciences. 26(5):983-92, 2020.
  • [3] Liu K, Lu W, Lin C, Huang X, Liu X, Yeung Y, Xue, Y. “Copy move forgery detection based on keypoint and patch match”. Multimedia Tools and Applications, 78(22), 31387-31413, 2019.
  • [4] Amiri E, Mosallanejad A, Sheikhahmadi A. “Copy-Move forgery detection by an optimal keypoint on SIFT (OKSIFT) Method”. Journal of Computer & Robotics, 14(2), 11-19, 2021.
  • [5] Tahaoğlu G, Ulutas G. “Copy-move forgery detection and localization with hybrid neural network approach”. Pamukkale University Journal of Engineering Sciences, 28(5), 748-760, 2022.
  • [6] Deep Kaur C, Kanwal N. “An analysis of image forgery detection techniques”. Statistics, Optimization & Information Computing, 7(2), 486-500, 2019.
  • [7] Roy A, Dixit R, Naskar R, Chakraborty RS. “Copy-Move forgery detection in digital images-survey and accuracy estimation metrics”. In Digital Image Forensics, 27-56, Springer, 2020.
  • [8] Alberry HA, Hegazy AA, Salama GI. “A fast SIFT based method for copy move forgery detection”. Future Computing and Informatics Journal, 3(2), 159-165, 2018.
  • [9] Sun Y, Ni R, Zhao Y. “Nonoverlapping blocks based copy-move forgery detection”. Security and Communication Networks, 2018.
  • [10] Teerakanok, Songpon, Tetsutaro Uehara. "Copy-move forgery detection: A state-of-the-art technical review and analysis". IEEE Access, 7, 40550-40568, 2019.
  • [11] Hilal A, Chantaf S. “Uncovering copy–move traces using principal component analysis, discrete cosine transform and Gabor filter”. Analog Integrated Circuits and Signal Processing, 96(2), 283-291, 2018.
  • [12] Lee JC. “Copy-move image forgery detection based on Gabor magnitude”. Journal of Visual Communication and Image Representation, 31, 320-334, 2015.
  • [13] Vega EAA, Fernández EG, Orozco ALS, Villalba LJG. “Copy-move forgery detection technique based on discrete cosine transform blocks features”. Neural Computing and Applications, 33(10), 4713-4727, 2021.
  • [14] Lowe DG. “Object Recognition from Local Scale-Invariant Features”. International Journal of Computer Vision, 60(2), 91-110, 2004.
  • [15] Amerini I, Ballan L, Caldelli R, Del Bimbo A, Del Tongo L, & Serra G. “Copy-move forgery detection and localization by means of robust clustering with J-Linkage”. Signal Processing: Image Communication, 28(6), 659-669, 2013.
  • [16] Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G. “A sift-based forensic method for copy–move attack detection and transformation recovery”. IEEE Transactions on Information Forensics and Security, 6(3), 1099-1110, 2011.
  • [17] Üstün O. “Determination of activation functions in a feedforward neural network by using genetic algorithm”. Pamukkale University Journal of Engineering Sciences, 15(3), 395-403, 2009.
  • [18] Başkan Ö, Ceylan H. “Differential evolution algorithm based solution approaches for solving transportation network design problems”. Pamukkale University Journal of Engineering Sciences, 20(9), 324-31, 2014.
  • [19] Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S. “Equilibrium optimizer: a novel optimization algorithm”. Knowledge-Based Systems, 191, 1-21, 2020.
  • [20] Shaheen AM, Elsayed AM, El-Sehiemy RA, Abdelaziz AY. “Equilibrium optimization algorithm for network reconfiguration and distributed generation allocation in power systems”. Applied Soft Computing, 98, 1-19, 2021.
  • [21] Şahin Y, Ulutaş G, İmamoğlu M. “A fragile zero watermarking schema to check integrity of relational databases based on discrete cosines transform”. Pamukkale University Journal of Engineering Sciences, 24(5), 887-897, 2018.
  • [22] Yildiz K, Buldu A. “Wavelet transform and principal component analysis in fabric defect detection and classification”. Pamukkale University Journal of Engineering Sciences, 23(5), 622-627, 2017.
  • [23] Amiri E, Mosallanejad A, Sheikhahmad, A. “Copy-move forgery detection using a bat algorithm with mutation”. International Journal of Nonlinear Analysis and Applications, 12(Special Issue), 1947-1955, 2021.
  • [24] Ardizzone E, Bruno A, Mazzola G. “Copy–move forgery detection by matching triangles of keypoints”. IEEE Transactions on Information Forensics and Security, 10(10), 2084-2094, 2015.
  • [25] Lyu Q, Luo J, Liu K, Yin X, Liu J, Lu W. “Copy Move Forgery Detection based on double matching”. Journal of Visual Communication and Image Representation, 76, 1-14, 2021.
  • [26] Yang F, Li J, Lu W, Weng J. “Copy-move forgery detection based on hybrid features”. Engineering Applications of Artificial Intelligence, 59, 73-83, 2017.
  • [27] Lin C, Lu W, Huang X, Liu K, Sun W, Lin H, Tan Z. “Copy-move forgery detection using combined features and transitive matching”. Multimedia Tools and Applications, 78(21), 30081-30096, 2019.
  • [28] Emam M, Han Q, Niu X. “PCET based copy-move forgery detection in images under geometric transforms”. Multimedia Tools and Applications, 75(18), 11513-11527, 2016.
  • [29] Silva E, Carvalho T, Ferreira A, Rocha A. “Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes”. Journal of Visual Communication and Image Representation, 29, 16-32, 2015.
  • [30] Deng J, Yang J, Weng S, Gu G, Li Z. “Copy-move forgery detection robust to various transformation and degradation attacks”. KSII Transactions on Internet and Information Systems (TIIS), 12(9), 4467-4486, 2018.
  • [31] Dhiman G, Vijay K. "Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications". Advances in Engineering Software, 114, 48-70, 2017.
  • [32] Tralic D, Zupancic I, Grgic S, Grgic M. "CoMoFoD-New database for copy-move forgery detection". 55th International Symposium ELMAR-2013, Zadar, Croatla, 25-27 September 2013.
There are 32 citations in total.

Details

Primary Language English
Subjects Image Processing
Journal Section Research Article
Authors

Ehsan Amiri This is me

Ahmad Mosallanejad This is me

Amir Sheikhahmadi This is me

Publication Date April 30, 2024
Published in Issue Year 2024 Volume: 30 Issue: 2

Cite

APA Amiri, E., Mosallanejad, A., & Sheikhahmadi, A. (2024). Copy-Move forgery detection using EOA, DWT and DCT. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 222-227.
AMA Amiri E, Mosallanejad A, Sheikhahmadi A. Copy-Move forgery detection using EOA, DWT and DCT. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. April 2024;30(2):222-227.
Chicago Amiri, Ehsan, Ahmad Mosallanejad, and Amir Sheikhahmadi. “Copy-Move Forgery Detection Using EOA, DWT and DCT”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 2 (April 2024): 222-27.
EndNote Amiri E, Mosallanejad A, Sheikhahmadi A (April 1, 2024) Copy-Move forgery detection using EOA, DWT and DCT. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 2 222–227.
IEEE E. Amiri, A. Mosallanejad, and A. Sheikhahmadi, “Copy-Move forgery detection using EOA, DWT and DCT”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, pp. 222–227, 2024.
ISNAD Amiri, Ehsan et al. “Copy-Move Forgery Detection Using EOA, DWT and DCT”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/2 (April 2024), 222-227.
JAMA Amiri E, Mosallanejad A, Sheikhahmadi A. Copy-Move forgery detection using EOA, DWT and DCT. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:222–227.
MLA Amiri, Ehsan et al. “Copy-Move Forgery Detection Using EOA, DWT and DCT”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, 2024, pp. 222-7.
Vancouver Amiri E, Mosallanejad A, Sheikhahmadi A. Copy-Move forgery detection using EOA, DWT and DCT. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(2):222-7.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.