Research Article
BibTex RIS Cite

Removal of oil-grease and suspended solid by flotation method-milk and dairy products industry example

Year 2024, Volume: 30 Issue: 2, 263 - 270, 30.04.2024

Abstract

Oil and grease are one of the most important pollutants in dairy industry wastewater. Flotation is a well-known and reliable method used in dairy industry wastewater to remove oil-grease, and it can remove oil & grease as well as suspended solids and organic materials. Dissolved Air Flotation (DAF), is a flotation technique and is classified as (traditional) Classical DAF (CP-DAF) and new generation - microbubble pump DAF (MB-DAF) systems considering the air bubble generation method. The major difference between the two systems is the microbubble size. Generally, the bubble size of 50-120 microns in KP-DAF systems decreases to 20-50 microns in MB-DAF systems. Besides that, the classical DAF system has a more complex structure than the new generation DAF systems. It consists of more equipment, thus maintenance requirement is high and causes troubles more often. This situation requires constant effort and attention during the operation. In this study, oil & grease and suspended solid (SS) removal efficiency was evaluated by using pilot scale experimental DAF system. The impact of inflow rate, pump type, and the pressure was investigated. Pilot-plant was employed in the dairy factory and operated by real wastewater. The results shown that CP-DAF System has yielded lower oil & grease and suspended solid removal efficiency than MB-DAF systems. It has been determined that the optimum working pressure is 4 bar in both systems, and the highest performance was obtained at 1 m3/h. For CP-DAF system, oil & grease and SS removals were obtained as 61% and 54%, respectively. However, 70% and 63% removals for oil & grease and SS were performed for MB-DAF system. Accordingly, it has been obtained that the MB-DAF System operating at 1 m3/h and 4 bar, has approximately 10% higher performance in oil-grease and SS removal than the CP-DAF System.

References

  • [1] Tikariha A, Sahu O. “Study of Characteristics and treatments of dairy industry waste water”. Journal of Applied & Environmental Microbiology, 2(1), 16-22, 2014.
  • [2] Rad SJ, Lewis MJ. “Water utilization, energy utilization and waste water management in the dairy industry: a review”. International Journal of Dairy Technology, 67(1), 1-20, 2014.
  • [3] Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V. “Wastewater treatment in dairy industries-possibility of reuse”. Desalination, 195, 141-152, 2006.
  • [4] Pereira MDS, Borges AC, Heleno FF, Squillace LFA, Faroni LRD. “Treatment of synthetic milk industry wastewater using batch dissolved air flotation”. Journal of Cleaner Production, 189, 729-737, 2018.
  • [5] Özdemir Y, Alpaslan MN. “Yeni nesil çözünmüş hava flotasyonu (DAF) uygulamaları”. 14. National 2. International Enviromental Engineering Congress, Turkey 09-11 December 2021.
  • [6] Castillo A, Vall P, Garrido-Baserba M, Comas J, Poch M. “Selection of industrial (food, drink and milk sector) wastewater treatment technologies: a multi-criteria assessment”. Journal of Cleaner Production, 143, 180-190, 2017.
  • [7] Slavov, AK. “General characteristics and treatment possibilities of dairy wastewater-a review”. Food Technol. Biotechnol, 5 (1), 14-28, 2017.
  • [8] Özcan, T, Harputlugil BT. “Süt endüstrisi atıklarının çevresel etkileri ve biyoteknolojik olarak değerlendirilmesi”. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(2), 415-437, 2021.
  • [9] Ahmad T, Aadil RM, Ahmed H, Rahman UU, Soares BCV, Souza SLQ, Pimentel TC, Scudino H, Guimarães JT, Esmerino EA, Freitas MQ, Almada RB, Vendramel SMR, Silva MC, Cruz AG. “Treatment and utilization of dairy industrial waste: A review”. Trends in Food Science & Technology, 88, 361-372, 2019.
  • [10] Kaur N, “Different treatment techniques of dairy wastewater”, Groundwater for Sustainable Development, 14, 1-3, 2021.
  • [11] Joshibaa GJ, P. Kumara S, Feminaa CC, Jayashreea E, Racchanaa R, Sivanesan S. “Critical review on biological treatment strategies of dairy wastewater”. Desalination and Water Treatment, 160, 94-109, 2019.
  • [12] Zhao K, Wu YW, Young S, Chen XJ. “Biological treatment of dairy wastewater: a mini review”. Journal of Environmental Informatics Letters 4(1), 22-31, 2020.
  • [13] Das A, Kundu P, Adhikari S. “Biological treatment of dairy industry wastewater in a suspended growth batch reactor: performance evaluation and biodegradation kinetics” Bioremediation Journal, 26(4), 341-359, 2022.
  • [14] Kuzin EN, Kruchinina NE, Tyaglova YV, Gromovykh PS. “Coagulants in the processes of waste water treatment in dairy complex industry”. Chemistry for Sustainable Development, 28, 388-393, 2020.
  • [15] Andrade LH, Motta GE, Amaral MCS. “Treatment of dairy wastewater with a membrane bioreactor”. Brazilian Journal of Chemical Engineering, 30(4), 759-770, 2013.
  • [16] Cruz AG, Pimentel TC, Junior GLSA, Vendramel SMR. “Advanced strategies for dairy wastewater treatment: A perspective”. Advanced Technologies in Wastewater Treatment Food Processing Industry, 2023. https://doi.org/10.1016/B978-0-323-88510-2.00012-9.
  • [17] Stasinakis AS, Charalambous P, Vyrides I. “Dairy wastewater management in EU: Produced amounts, existing legislation, applied treatment processes and future challenges”. Journal of Environmental Management, 303, 1-10, 2022.
  • [18] Ng M, Dalhatou S, Wilson J, Kamdem BP, Temitope MB, Paumo HK, Djelal H, Assadi AA, Nguyen-Tri P, Kane A. “Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review”, Processes, 10(1300), 1-28, 2022.
  • [19] Han N, Zhang J, Hoang M, Gray S, Xie Z. “A review of process and wastewater reuse in the recycled paper industry”, Environmental Technology & Innovation, 24, 1-23, 2021.
  • [20] Thorat BN, Sonwani RK, “Current technologies and future perspectives for the treatment of complex petroleum refinery wastewater: A review”. Bioresource Technology, 355, 1-18, 2022.
  • [21] Falletti L, Conte L, Zaggia A, Battistini T, Garosi D. “Food industry wastewater treatment plant based on flotation and MBBR”. Modern Environment Science and Engineering, 1(2), 94-98, 2015.
  • [22] Rajapakse N, Zargar M, Sen T, Khiadani M. “Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review”. Separation and Purification Technology, 2898, 1-13, 2022.
  • [23] Muñoz-Alegría JA, Muñoz-España E, Flórez-Marulanda JF. “Dissolved air flotation: A review from the perspective of system parameters and uses in wastewater treatment”. TecnoLógicas, 24(52), 1-23, 2021.
  • [24] Shammas NK, Bennett GF. Principles of Air Flotation Technology. Editors: Wang LK, Shammas NK, Selke WA, Aulenbach DB. Flotation Technology, 1-41, New York, USA, Springer Science & Business Media LLC, 2010.
  • [25] Liu S, Wang Q, Ma H, Huang P, Li J, Kikuchi T. “Effect of micro-bubbles on coagulation flotation process of dyeing wastewater”. Separation and Purification Technology, 71, 337-346, 2010.
  • [26] Şengül F, Küçükgül E. Çevre Mühendisliğinde Fiziksel- Kimyasal Temel Işlemler ve Süreçler, İzmir, Türkiye, Dokuz Eylül Üniversitesi Mühendislik Mimarlık Fakültesi yayınları, İzmir, Türkiye, 1990.
  • [27] Ayhan M. “Atıksuların arıtılmasında DAF sistemlerinin önemi ve enerji verimliliği”. Su ve Çevre Teknolojileri, 158, 44-45, 2021.
  • [28] Nikuni. “Micro-bubble Generator”. https:// www. nikunijapan.com/product/104_index_detail.php (14.01.2023).
  • [29] Zheng T, Wang Q, Shi Z, Huang P, Li J, Zhang J, Wang J. “Separation of pollutants from oil-containing restaurant wastewater by novel microbubble air flotation and traditional dissolved air flotation”. Separation Science and Technology, 50, 2568-2577, 2015.
  • [30] tCouto HJB, Melo MV, Massarani G. “Treatment of milk industry effluent by dissolved air flotation”. Brazilian Journal of Chemical Engineering, 21(01), 83-91, 2004.
  • [31] Dassey A, Theegala C. “Optimizing the air dissolution parameters in an unpacked dissolved air flotation system”. Water, 4, 1-11, 2012.
  • [32] Wang Y, Jin X, Yang S, Wang G, Xu L, Jin P, Shi X, Shi Y. “Interactions between flocs and bubbles in the separation zone of dissolved air flotation system”. Science of the Total Environment, 761, 1-12, 2021.

Flotasyon yöntemi ile yağ-gres ve askıda katı madde giderimi-süt ve süt ürünleri endüstrisi örneği

Year 2024, Volume: 30 Issue: 2, 263 - 270, 30.04.2024

Abstract

Süt endüstrisi atıksularındaki en önemli kirliliklerden biri yağ ve grestir. Flotasyon, yağ-gres gideriminde kullanılan bilinen ve güvenilir bir yöntem olup, yağ-gres ile birlikte askıda katı madde ve organik maddeleri de uzaklaştırabilmektedir. Flotasyon yöntemlerinden biri olan Çözünmüş Hava Flotasyonu (Dissolved Air Flotation, DAF), hava kabarcığı oluşturma yöntemine göre klasik DAF(KP-DAF) ve yeni nesil mikrokabarcık pompalı DAF (MK-DAF) olmak üzere 2 gruba ayrılırlar. İki sistem arasındaki en büyük farklılık mikrokabarcık boyutudur. Genellikle, KP-DAF sistemlerinde 50-120 mikron çapında oluşan kabarcık boyutu, MK-DAF sistemlerinde 20-50 mikron boyutuna inmektedir. Ayrıca, KP DAF sistemi, yeni nesil DAF sistemlerine göre daha karmaşık bir yapıya sahip olup, daha fazla ekipmandan oluştuğu için bakım-onarım ihtiyacı fazladır ve daha sık arıza yapmaktadır. Bu durum işletme açısından sürekli bir efor ve dikkat gerektirmektedir. Bu çalışmada, pilot bir DAF sistemi düzeneği kullanılarak yağ-gres ve askıda katı madde giderimi incelenmiş, giriş debisi, pompa çeşidi, basınç değişimi parametrelerinin verime etkisi araştırılmıştır. Pilot DAF ünitesi, süt ve süt ürünleri üretimi yapan bir işletmede kurulmuş ve gerçek atıksu ile çalışılmıştır. KP-DAF Sisteminin, MK-DAF sistemlerine göre daha düşük yağ-gres ve askıda katı madde (AKM) giderim verimine sahip olduğu tespit edilmiştir. Her iki sistem için optimum çalışma basıncı 4 bar, en iyi verim de 1 m3/h giriş debisinde elde edilmiştir. KP-DAF sistemi ile yağ-gres ve AKM giderimi sırasıyla %61 ve %54, MK-DAF sistemi ile %70 ve %63 mertebesinde gerçekleşmiştir. Bu verilere göre 1 m3/h ve 4 bar işletme koşulunda MK-DAF Sistemi, KP-DAF Sistemine göre, yağ-gres ve AKM gideriminde %10 ve üzeri performans göstermiştir.

References

  • [1] Tikariha A, Sahu O. “Study of Characteristics and treatments of dairy industry waste water”. Journal of Applied & Environmental Microbiology, 2(1), 16-22, 2014.
  • [2] Rad SJ, Lewis MJ. “Water utilization, energy utilization and waste water management in the dairy industry: a review”. International Journal of Dairy Technology, 67(1), 1-20, 2014.
  • [3] Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V. “Wastewater treatment in dairy industries-possibility of reuse”. Desalination, 195, 141-152, 2006.
  • [4] Pereira MDS, Borges AC, Heleno FF, Squillace LFA, Faroni LRD. “Treatment of synthetic milk industry wastewater using batch dissolved air flotation”. Journal of Cleaner Production, 189, 729-737, 2018.
  • [5] Özdemir Y, Alpaslan MN. “Yeni nesil çözünmüş hava flotasyonu (DAF) uygulamaları”. 14. National 2. International Enviromental Engineering Congress, Turkey 09-11 December 2021.
  • [6] Castillo A, Vall P, Garrido-Baserba M, Comas J, Poch M. “Selection of industrial (food, drink and milk sector) wastewater treatment technologies: a multi-criteria assessment”. Journal of Cleaner Production, 143, 180-190, 2017.
  • [7] Slavov, AK. “General characteristics and treatment possibilities of dairy wastewater-a review”. Food Technol. Biotechnol, 5 (1), 14-28, 2017.
  • [8] Özcan, T, Harputlugil BT. “Süt endüstrisi atıklarının çevresel etkileri ve biyoteknolojik olarak değerlendirilmesi”. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(2), 415-437, 2021.
  • [9] Ahmad T, Aadil RM, Ahmed H, Rahman UU, Soares BCV, Souza SLQ, Pimentel TC, Scudino H, Guimarães JT, Esmerino EA, Freitas MQ, Almada RB, Vendramel SMR, Silva MC, Cruz AG. “Treatment and utilization of dairy industrial waste: A review”. Trends in Food Science & Technology, 88, 361-372, 2019.
  • [10] Kaur N, “Different treatment techniques of dairy wastewater”, Groundwater for Sustainable Development, 14, 1-3, 2021.
  • [11] Joshibaa GJ, P. Kumara S, Feminaa CC, Jayashreea E, Racchanaa R, Sivanesan S. “Critical review on biological treatment strategies of dairy wastewater”. Desalination and Water Treatment, 160, 94-109, 2019.
  • [12] Zhao K, Wu YW, Young S, Chen XJ. “Biological treatment of dairy wastewater: a mini review”. Journal of Environmental Informatics Letters 4(1), 22-31, 2020.
  • [13] Das A, Kundu P, Adhikari S. “Biological treatment of dairy industry wastewater in a suspended growth batch reactor: performance evaluation and biodegradation kinetics” Bioremediation Journal, 26(4), 341-359, 2022.
  • [14] Kuzin EN, Kruchinina NE, Tyaglova YV, Gromovykh PS. “Coagulants in the processes of waste water treatment in dairy complex industry”. Chemistry for Sustainable Development, 28, 388-393, 2020.
  • [15] Andrade LH, Motta GE, Amaral MCS. “Treatment of dairy wastewater with a membrane bioreactor”. Brazilian Journal of Chemical Engineering, 30(4), 759-770, 2013.
  • [16] Cruz AG, Pimentel TC, Junior GLSA, Vendramel SMR. “Advanced strategies for dairy wastewater treatment: A perspective”. Advanced Technologies in Wastewater Treatment Food Processing Industry, 2023. https://doi.org/10.1016/B978-0-323-88510-2.00012-9.
  • [17] Stasinakis AS, Charalambous P, Vyrides I. “Dairy wastewater management in EU: Produced amounts, existing legislation, applied treatment processes and future challenges”. Journal of Environmental Management, 303, 1-10, 2022.
  • [18] Ng M, Dalhatou S, Wilson J, Kamdem BP, Temitope MB, Paumo HK, Djelal H, Assadi AA, Nguyen-Tri P, Kane A. “Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review”, Processes, 10(1300), 1-28, 2022.
  • [19] Han N, Zhang J, Hoang M, Gray S, Xie Z. “A review of process and wastewater reuse in the recycled paper industry”, Environmental Technology & Innovation, 24, 1-23, 2021.
  • [20] Thorat BN, Sonwani RK, “Current technologies and future perspectives for the treatment of complex petroleum refinery wastewater: A review”. Bioresource Technology, 355, 1-18, 2022.
  • [21] Falletti L, Conte L, Zaggia A, Battistini T, Garosi D. “Food industry wastewater treatment plant based on flotation and MBBR”. Modern Environment Science and Engineering, 1(2), 94-98, 2015.
  • [22] Rajapakse N, Zargar M, Sen T, Khiadani M. “Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review”. Separation and Purification Technology, 2898, 1-13, 2022.
  • [23] Muñoz-Alegría JA, Muñoz-España E, Flórez-Marulanda JF. “Dissolved air flotation: A review from the perspective of system parameters and uses in wastewater treatment”. TecnoLógicas, 24(52), 1-23, 2021.
  • [24] Shammas NK, Bennett GF. Principles of Air Flotation Technology. Editors: Wang LK, Shammas NK, Selke WA, Aulenbach DB. Flotation Technology, 1-41, New York, USA, Springer Science & Business Media LLC, 2010.
  • [25] Liu S, Wang Q, Ma H, Huang P, Li J, Kikuchi T. “Effect of micro-bubbles on coagulation flotation process of dyeing wastewater”. Separation and Purification Technology, 71, 337-346, 2010.
  • [26] Şengül F, Küçükgül E. Çevre Mühendisliğinde Fiziksel- Kimyasal Temel Işlemler ve Süreçler, İzmir, Türkiye, Dokuz Eylül Üniversitesi Mühendislik Mimarlık Fakültesi yayınları, İzmir, Türkiye, 1990.
  • [27] Ayhan M. “Atıksuların arıtılmasında DAF sistemlerinin önemi ve enerji verimliliği”. Su ve Çevre Teknolojileri, 158, 44-45, 2021.
  • [28] Nikuni. “Micro-bubble Generator”. https:// www. nikunijapan.com/product/104_index_detail.php (14.01.2023).
  • [29] Zheng T, Wang Q, Shi Z, Huang P, Li J, Zhang J, Wang J. “Separation of pollutants from oil-containing restaurant wastewater by novel microbubble air flotation and traditional dissolved air flotation”. Separation Science and Technology, 50, 2568-2577, 2015.
  • [30] tCouto HJB, Melo MV, Massarani G. “Treatment of milk industry effluent by dissolved air flotation”. Brazilian Journal of Chemical Engineering, 21(01), 83-91, 2004.
  • [31] Dassey A, Theegala C. “Optimizing the air dissolution parameters in an unpacked dissolved air flotation system”. Water, 4, 1-11, 2012.
  • [32] Wang Y, Jin X, Yang S, Wang G, Xu L, Jin P, Shi X, Shi Y. “Interactions between flocs and bubbles in the separation zone of dissolved air flotation system”. Science of the Total Environment, 761, 1-12, 2021.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering (Other)
Journal Section Research Article
Authors

Yasemin Özdemir This is me

Deniz Dölgen

Mehmet Necdet Alpaslan This is me

Publication Date April 30, 2024
Published in Issue Year 2024 Volume: 30 Issue: 2

Cite

APA Özdemir, Y., Dölgen, D., & Alpaslan, M. N. (2024). Flotasyon yöntemi ile yağ-gres ve askıda katı madde giderimi-süt ve süt ürünleri endüstrisi örneği. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 263-270.
AMA Özdemir Y, Dölgen D, Alpaslan MN. Flotasyon yöntemi ile yağ-gres ve askıda katı madde giderimi-süt ve süt ürünleri endüstrisi örneği. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. April 2024;30(2):263-270.
Chicago Özdemir, Yasemin, Deniz Dölgen, and Mehmet Necdet Alpaslan. “Flotasyon yöntemi Ile Yağ-Gres Ve askıda Katı Madde Giderimi-süt Ve süt ürünleri endüstrisi örneği”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 2 (April 2024): 263-70.
EndNote Özdemir Y, Dölgen D, Alpaslan MN (April 1, 2024) Flotasyon yöntemi ile yağ-gres ve askıda katı madde giderimi-süt ve süt ürünleri endüstrisi örneği. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 2 263–270.
IEEE Y. Özdemir, D. Dölgen, and M. N. Alpaslan, “Flotasyon yöntemi ile yağ-gres ve askıda katı madde giderimi-süt ve süt ürünleri endüstrisi örneği”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, pp. 263–270, 2024.
ISNAD Özdemir, Yasemin et al. “Flotasyon yöntemi Ile Yağ-Gres Ve askıda Katı Madde Giderimi-süt Ve süt ürünleri endüstrisi örneği”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/2 (April 2024), 263-270.
JAMA Özdemir Y, Dölgen D, Alpaslan MN. Flotasyon yöntemi ile yağ-gres ve askıda katı madde giderimi-süt ve süt ürünleri endüstrisi örneği. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:263–270.
MLA Özdemir, Yasemin et al. “Flotasyon yöntemi Ile Yağ-Gres Ve askıda Katı Madde Giderimi-süt Ve süt ürünleri endüstrisi örneği”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, 2024, pp. 263-70.
Vancouver Özdemir Y, Dölgen D, Alpaslan MN. Flotasyon yöntemi ile yağ-gres ve askıda katı madde giderimi-süt ve süt ürünleri endüstrisi örneği. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(2):263-70.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.