Research Article
BibTex RIS Cite

Production and Characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain

Year 2024, Volume: 30 Issue: 2, 271 - 281, 30.04.2024

Abstract

In this study, bacterial cellulose (BC) was obtained from Komagataeibacter xylinus S4 and characterized in detail. The effects of a various of carbon sources and media, different pH conditions, incubation temperatures, Surface area/Volume ratios, and incubation durations were determined for BC production. Considering the carbon types, the amount of BC production from high to low was realized as sucrose, fructose, mannitol, xylose, arabinose, and lactose. The highest BC amount (1.303 g/L) was achieved by combining M1A05P5 broth, 30 °C, 1.06 cm-1 Surface area/Volume ratio, pH 3.5 and 21 days. According to scanning electron microscope (SEM) analysis, the cellulose fibril diameters were 34.87-45.97 nm at pH 3.5 and 29.71-102.3 nm at pH 6.5 in M1A05P5. Also, TGA analysis exhibited that the weight loss of BC in the removal of water step initialized between 50 °C and 150 °C and the degradation step initialized between 215 °C and 228 °C. Finally, the electrical conductivity values of the BC samples were determined on the 27-137 °C temperature scale. It was observed that the conductivity was temperature dependent, and the conductivity increased exponentially as the temperature increased. In conclusion, the cellulose from K. xylinus S4 typically showed a semiconducting behavior.

References

  • [1] Ang, JF. “Water-retention capacity and viscosity effect of powdered cellulose”. Journal of Food Science, 56, 1682-1684, 1991.
  • [2] Heinamaki JT, Lehtola VM, Nikupaavo P, Yliruusi JK. “Mechanical and moisture permeability properties of aqueous-based hydroxypropyl methylcellulose coating systems plasticized with polyethylene glycol”. International Journal of Pharmaceutics, 112(2), 191-196, 1994.
  • [3] Ren X, Kocer HB, Worley S, Broughton T, Huang V. “Rechargeable biocidal cellulose: synthesis and application of 3-(2,3-dihydroxypropyl)-5,5-dimethylimidazolidine-2,4-dione”. Carbohydrate Polymers, 75, 683-687, 2009.
  • [4] Zhang T, Zhou P, Zhan Y, Shi X, Lin J, Du Y, Li X, Deng H. “Pectin/lysozyme bilayers layer-by-layer eposited cellulose nanofibrous mats for antibacterial application”. Carbohydrate Polymers, 117, 687-693, 2015.
  • [5] Wang J, Tavakoli J, Tang Y. “Bacterial cellulose production, properties and applications with different culture methods-A review”. Carbohydrate Polymers, 219, 63-76, 2019.
  • [6] Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Pinto JJCC, Gandini A. “Novel Bacterial Cellulose-Acrylic Resin Nanocomposites”. Composites Science and Technology, 70, 1148-1153, 2010.
  • [7] Keshk SMAS. “Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus”. Carbohydrate Polymers, 99, 98-100, 2014.
  • [8] Rozenberga L, Skute M, Belkova L, Sable I, Vikele L, Semjonovs P, Sakab M, Ruklisha M, Paegle L. “Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria”. Carbohydrate Polymers, 144, 33-40, 2016.
  • [9] Top B, Uguzdogan E, Dogan NM, Arslan S, Bozbeyoglu NN, Kabalay B. “Production and characterization of bacterial cellulose from Komagataeibacter xylinus isolated from home-made Turkish wine vinegar”. Cellulose Chemistry and Technology, 55(3-4), 243-254, 2021.
  • [10] Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuda T, Hikita M, Handa H. “Optically transparent composites reinforced with networks of bacterial nanofibers”. Advanced Materials, 17, 153-155, 2005.
  • [11] Dahman Y, Jayasuriya KE, Kalis M. “Potential of Biocellulose Nanofibers Production from Agricultural Renewable Resources: Preliminary Study”. Applied Biochemistry and Biotechnology, 162, 1647-1659, 2010.
  • [12] Ul-Islam M, Khan T, Park JK. “Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification”. Carbohydrate Polymers, 88, 596-603, 2012.
  • [13] Raiszadeh-Jahromi Y, Rezazadeh-Bari M, Almasi H, Amir S. “Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design”. Journal of Food Science and Technology, 57, 2524-2533, 2020.
  • [14] Lisdiyanti P, Navarro RR, Uchimura T, Komagata K. “Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov”. International Journal of Systematic and Evolutionary Microbiology, 56, 2101-2111, 2006.
  • [15] Rangaswamy BE, Vanitha KP, Hungund BS. “Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit”. International Journal of Polymer Science, 280784, 1-8, 2015.
  • [16] Jahan F, Kumar V, Saxena RK. “Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance”. Bioresource Technology, 250, 922-926, 2018.
  • [17] Mohammadkazemi F, Azin M, Ashori A. “Production of bacterial cellulose using different carbon sources and culture media”. Carbohydrate Polymers, 117, 518-523, 2015.
  • [18] Pacheco G, Nogueira CR, Meneguin AB, Trovatti E, Silva MCC, Machado RTA, Ribeiro SJL, da Silva Filho EC, Barud HS. “Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source”. Industrial Crops and Products, 107, 13-19, 2017.
  • [19] Kojima Y, Tonouchi N, Tsuchida T, Yoshinaga F, Yamada Y. “The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: The proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. nov”. Bioscience, Biotechnology, and Biochemistry, 62, 185-187, 1998.
  • [20] Son C, Chung S, Lee J, Kim S. “Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures”. Journal of Microbiology and Biotechnology, 12, 722-728, 2002.
  • [21] Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M. “Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit”. International Journal of Systematic and Evolutionary Microbiology, 55, 2365-2370, 2005.
  • [22] Hungund BS, Gupta SG. “Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple”. World Journal of Microbiology and Biotechnology, 26, 1823-1828, 2010.
  • [23] Suwanposri A, Yukphan P, Yamada Y, Ochaikul D. “Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand”. Maejo International Journal of Science and Technology, 7, 70-82, 2013.
  • [24] Aydin YA, Aksoy ND. “Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A”. Applied Microbiology and Biotechnology, 98, 1065-1075, 2014.
  • [25] Jia S, Ou H, Chen G, Choi D, Cho K, Okabe M, Cha WS. “Cellulose production from Gluconobacter oxydans TQ-B2”. Biotechnology and Bioprocess Engineering, 9, 166-170, 2004.
  • [26] Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. “Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha”. Current Microbiology, 57, 449-453, 2008.
  • [27] Hestrin S, Schramm M. “Synthesis of cellulose by Acetobacter xylinum: 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose”. Biochemical Journal, 58(2), 345-352, 1954.
  • [28] Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M. “The structure and mechanical properties of sheets prepared from bacterial cellulose”. Journal of Materials Science, 24, 3141-3145, 1989.
  • [29] Çakar F, Kati A, Özer I, Demirbağ DD, Şahin F, Aytekin AÖ. “Newly developed medium and strategy for bacterial cellulose production” Biochemical Engineering Journal, 92, 35-40, 2014.
  • [30] McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW. “Mechanical and Structural Properties of Native and Alkali-Treated Bacterial Cellulose Produced by Gluconacetobacter Xylinus Strain ATCC 53524”. Cellulose, 16, 1047-1055, 2009.
  • [31] Braun D, Cherdron H, Rehahn M, Ritter H, Voit,B. Polymer Synthesis: Theory and Practice Fundamentals, Methods, Experiments. 5th ed. Berlin, Germany, Springer, 2013.
  • [32] Filho GR, Monteiro DS, Meireles C, Assunçao RMN, Cerqueira DA, Barud HS, Ribeiro SJ, Messadeq Y. “Synthesis and characterization of cellulose acetate produced from recycled newspaper”. Carbohydrate Polymers, 73(1), 74-82, 2008.
  • [33] Tonouchi N, Horinouchi S, Tsuchida T, Yoshinaga F. “Increased Cellulose Production from Sucrose by Acetobacter after Introducing the Sucrose Phosphorylase Gene”. Bioscience, Biotechnology, and Biochemistry, 62, 1778-1780, 1998.
  • [34] Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, Gómez C, Gañán P, Rojas OJ, Castro C. “Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis”. Materials, 10(639), 1-13, 2017.
  • [35] Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ. “Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524”. Journal of Applied Microbiology, 107, 576-583, 2009.
  • [36] Pourramezan GZ, Roayaei AM, Qezelbash QR. “Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2”. Biotechnology, 8, 150-154, 2009.
  • [37] Çoban EP, Biyik H. “Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5”. African Journal of Biotechnology, 10(27), 5346-5354, 2011.
  • [38] Ishihara M, Matsunaga M, Hayashi N, Tišler V. “Utilization of d-xylose as carbon source for production of bacterial cellulose”. Enzyme and Microbial Technology, 31, 986-991, 2002.
  • [39] Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP. “Gluconacetobacter sacchari: An Efficient Bacterial Cellulose Cell-Factory”. Carbohydrate Polymers, 86, 1417-1420, 2011.
  • [40] Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K. “Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp”. Journal of Bioscience and Bioengineering, 99(4), 415-422, 2005.
  • [41] Jonas R, Farah L. “Production and application of microbial cellulose”. Polymer Degradation and Stability, 59, 101-106, 1998.
  • [42] Seto A, Kojima Y, Tonouchi N, Tsuchida T, Yoshinaga F. “Screening of bacterial cellulose producing Acetobacter strains suitable for sucrose as a carbon source”. Bioscience, Biotechnology, and Biochemistry, 61(4), 735-736, 1997.
  • [43] Masaoka S, Ohe T, Sakota N. “Production of cellulose from glucose by Acetobacter xylinum”. Journal of Fermentation and Bioengineering, 75, 18-22, 1993.
  • [44] Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A. “Bacterial cellulose production from industrial waste and by-product streams”. International Journal of Molecular Sciences, 16, 14832-14849, 2015.
  • [45] Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP. “Utilization of residues from agro-forest industries in the production of high value bacterial cellulose”. Bioresource Technology,102, 7354-7360, 2011.
  • [46] Jung HI, Lee OM, Jeong JH, Jeon YD, Park KH, Kim HS, An WG, Son HJ. “Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium”. Biotechnology and Applied Biochemistry, 162(2), 486-497, 2010.
  • [47] Vazquez A, Foresti ML, Cerrutti P, Galvagno M. “Bacterial cellulose from simple and low-cost production media by Gluconacetobacter xylinus”. Journal of Polymers and the Environment, 21(2), 545-554, 2013.
  • [48] Gayathry G, Gopalaswamy G. “Production and characterization of microbial cellulosic fible from Acetobacter xylinum”. Indian Journal of Fibre and Textile Research, 39, 93-96, 2014.
  • [49] Shaikh HM, Anis A, Poulose AM, Al-Zahrani SM, Madhar NA, Alhamidi A, Aldeligan SH, Alsubaie FS. “Synthesis and characterization of cellulose triacetate obtained from date palm (Phoenix dactylifera L.) trunk mesh-derived cellulose”. Molecules, 27, 1434, 1-13, 2022.
  • [50] De Oliveira SA, da Silva BC, Riegel-Vidotti IC, Urbano A, de Sousa Faria-Tischer PC, Tischer CA. “Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb”. International Journal of Biological Macromolecules, 97, 642-653, 2017.
  • [51] Faria-Tischer PCS, Costa CAR, Tozetti I, Dall’Antonia LH, Vidotti M. “Structure and effects of gold nanoparticles in bacterial cellulose-polyaniline conductive membranes”. RSC Advances, 6, 9571-9580, 2016.
  • [52] George J, Ramana KV, Bawa AS, Siddaramaiah. “Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites”. International Journal of Biological Macromolecules, 48(1), 50-57, 2011.
  • [53] Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Ribeiro SJL. “Thermal characterization of bacterial cellulose-phosphate composite membranes”. Journal of Thermal Analysis and Calorimetry, 87(3), 815-818, 2007.
  • [54] Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W. Comprehensive Cellulose Chemistry. Volume 1: Fundamentals and Analytical Methods. 1st ed. New York, USA, Wiley-VCH, 1998.
  • [55] Halib N, Amin M, Ahmad I. “Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose”. Sains Malaysiana, 41(2), 205-211, 2012.
  • [56] Surma-ślusarska B, Presler S. “Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking”. Fibres and Textiles in Eastern Europe, 16(69), 108-111, 2008.
  • [57] Sun JX, Xu F, Sun XF, Xiao B, Sun RC. “Physico-chemical and thermal characterization of cellulose from barley straw”. Polymer Degradation and Stability, 88(3), 521-531, 2005.
  • [58] Gabbot P. Principles and Applications of Thermal Analysis. 1st ed. Oxford, United Kingdom, Blackwell Publishing Ltd, 2008.
  • [59] Candido RG, Godoy GG, Gonçalves AR. “Characterization and application of cellulose acetate synthesized from sugarcane bagasse”. Carbohydrate Polymers, 167, 280-289, 2017.
  • [60] Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL. “Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose”. Thermochim Acta, 471, 61-69, 2008.
  • [61] Yamamoto H, Horii F, Hirai A. “Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy”. Cellulose, 13, 327-342, 2006.
  • [62] Kim DY, Nishiyama Y, Kuga S. “Surface acetylation of bacterial cellulose”. Cellulose, 9, 361-367, 2002.
  • [63] Tabuchi M, Watanabe K, Morinaga Y, Yoshinaga F. “Acetylation of bacterial cellulose: preparation of cellulose acetate having a high degree of polymerization”. Bioscience, Biotechnology, and Biochemistry, 62(7), 1451-1454, 1998.
  • [64] Kotatha D, Morishima K, Uchida S, Ogino M, Ishikawa M, Futuike T, Tamura H. “Preparation and characterization of gel electrolyte with bacterial cellulose coated with alternating layers of chitosan and alginate for electric double-layer capacitors”. Research on Chemical Intermediates, 44(8), 4971-4987, 2018.
  • [65] Ccorahua R, Troncoso OP, Rodriguez S, Lopez D, Torres FG. “Hydrazine treatment improves conductivity of bacterial cellulose/graphene nanocomposites obtained by a novel processing method”. Carbohydrate Polymers, 171, 68-76, 2017.
  • [66] Zhou ZH, Yang YB, Han YY, Guo QQ, Zhang XX, Lu CH. “In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites”. Carbohydrate Polymers, 177, 241-248, 2017.
  • [67] Lee SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM, Huh JB. “The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration”. The Journal of Advanced Prosthodontics, 7(6), 484-495, 2015.
  • [68] Feng Y, Zhang X, Shen Y, Yoshino K, Feng W. “A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite”. Carbohydrate Polymers, 87(1), 644-649, 2012.
  • [69] Liang HW, Guan QF, Zhu Z, Song LT, Yao HB, Lei X, Yu SH. “Highly conductive and stretchable conductors fabricated from bacterial cellulose”. NPG Asia Materials, 4,(e19), 1-6, 2012.
  • [70] Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z. “The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein 2”. Biomaterials, 33, 6644-6649, 2012.
  • [71] Hu W, Chen S, Yang Z, Liu L, Wang H. “Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline”. The Journal of Physical Chemistry B, 115(26), 8453-8457, 2011.
  • [72] Takanoglu D, Yilmaz K, Ozcan Y, Karabulut O. “Structural, electrical and optical properties of thermally evaporated CdSe and In-doped CdSe thin films”. Chalcogenide Letters, 12, 35-42, 2015.

Komagataeibacter xylinus S4 suşundan bakteriyel selüloz üretimi ve karakterizasyonu

Year 2024, Volume: 30 Issue: 2, 271 - 281, 30.04.2024

Abstract

Bu çalışmada, Komagataeibacter xylinus S4'ten elde edilen bakteriyel selüloz (BS) detaylı şekilde karakterize edilmiştir. Çeşitli karbon kaynakları ve ortamlarının, farklı pH şartları, sıcaklıklar, yüzey alanı/hacim oranları ve inkübasyon zamanlarının BS üretimine etkisi tespit edilmiştir. Karbon tipleri gözönüne alındığında, yüksekten düşüğe doğru BS üretim miktarı, sükroz, fruktoz, mannitol, ksiloz, arabinoz ve laktoz şeklinde gerçekleşmiştir. En yüksek BS miktarına (1.303 g/L), M1A05P5 sıvı besiyeri, 30 °C sıcaklık, 1.06 cm-1 yüzey alanı/hacim oranı, pH 3.5 ve 21 gün kombinasyonunda ulaşılmıştır. Taramalı elektron mikroskobu (SEM) analizine göre M1A05P5 ortamında üretilen bakteriyel selüloz liflerinin çapları pH 3.5'te 34.87-45.97 nm değerindeyken pH 6.5 değerine yükseldiğinde lif çapları 29.71-102.3 nm olarak ölçülmüştür. Ayrıca, TGA analizi, BS numunelerinde dehidrasyon adımındaki ağırlık kaybının 50 °C ile 150 °C arasında, bozunma adımının ise 215 °C ile 228 °C arasında başladığını göstermiştir. Son olarak, BS örneklerinin elektriksel iletkenlik değerleri 27-137 °C sıcaklık skalasında tespit edildi. İletkenliğin sıcaklığa bağlı olduğu ve sıcaklık arttıkça iletkenliğin üstel olarak arttığı gözlendi. Sonuç olarak, K. xylinus S4 selülozu tipik olarak yarı iletken bir davranış göstermiştir.

References

  • [1] Ang, JF. “Water-retention capacity and viscosity effect of powdered cellulose”. Journal of Food Science, 56, 1682-1684, 1991.
  • [2] Heinamaki JT, Lehtola VM, Nikupaavo P, Yliruusi JK. “Mechanical and moisture permeability properties of aqueous-based hydroxypropyl methylcellulose coating systems plasticized with polyethylene glycol”. International Journal of Pharmaceutics, 112(2), 191-196, 1994.
  • [3] Ren X, Kocer HB, Worley S, Broughton T, Huang V. “Rechargeable biocidal cellulose: synthesis and application of 3-(2,3-dihydroxypropyl)-5,5-dimethylimidazolidine-2,4-dione”. Carbohydrate Polymers, 75, 683-687, 2009.
  • [4] Zhang T, Zhou P, Zhan Y, Shi X, Lin J, Du Y, Li X, Deng H. “Pectin/lysozyme bilayers layer-by-layer eposited cellulose nanofibrous mats for antibacterial application”. Carbohydrate Polymers, 117, 687-693, 2015.
  • [5] Wang J, Tavakoli J, Tang Y. “Bacterial cellulose production, properties and applications with different culture methods-A review”. Carbohydrate Polymers, 219, 63-76, 2019.
  • [6] Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Pinto JJCC, Gandini A. “Novel Bacterial Cellulose-Acrylic Resin Nanocomposites”. Composites Science and Technology, 70, 1148-1153, 2010.
  • [7] Keshk SMAS. “Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus”. Carbohydrate Polymers, 99, 98-100, 2014.
  • [8] Rozenberga L, Skute M, Belkova L, Sable I, Vikele L, Semjonovs P, Sakab M, Ruklisha M, Paegle L. “Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria”. Carbohydrate Polymers, 144, 33-40, 2016.
  • [9] Top B, Uguzdogan E, Dogan NM, Arslan S, Bozbeyoglu NN, Kabalay B. “Production and characterization of bacterial cellulose from Komagataeibacter xylinus isolated from home-made Turkish wine vinegar”. Cellulose Chemistry and Technology, 55(3-4), 243-254, 2021.
  • [10] Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuda T, Hikita M, Handa H. “Optically transparent composites reinforced with networks of bacterial nanofibers”. Advanced Materials, 17, 153-155, 2005.
  • [11] Dahman Y, Jayasuriya KE, Kalis M. “Potential of Biocellulose Nanofibers Production from Agricultural Renewable Resources: Preliminary Study”. Applied Biochemistry and Biotechnology, 162, 1647-1659, 2010.
  • [12] Ul-Islam M, Khan T, Park JK. “Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification”. Carbohydrate Polymers, 88, 596-603, 2012.
  • [13] Raiszadeh-Jahromi Y, Rezazadeh-Bari M, Almasi H, Amir S. “Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design”. Journal of Food Science and Technology, 57, 2524-2533, 2020.
  • [14] Lisdiyanti P, Navarro RR, Uchimura T, Komagata K. “Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov”. International Journal of Systematic and Evolutionary Microbiology, 56, 2101-2111, 2006.
  • [15] Rangaswamy BE, Vanitha KP, Hungund BS. “Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit”. International Journal of Polymer Science, 280784, 1-8, 2015.
  • [16] Jahan F, Kumar V, Saxena RK. “Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance”. Bioresource Technology, 250, 922-926, 2018.
  • [17] Mohammadkazemi F, Azin M, Ashori A. “Production of bacterial cellulose using different carbon sources and culture media”. Carbohydrate Polymers, 117, 518-523, 2015.
  • [18] Pacheco G, Nogueira CR, Meneguin AB, Trovatti E, Silva MCC, Machado RTA, Ribeiro SJL, da Silva Filho EC, Barud HS. “Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source”. Industrial Crops and Products, 107, 13-19, 2017.
  • [19] Kojima Y, Tonouchi N, Tsuchida T, Yoshinaga F, Yamada Y. “The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: The proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. nov”. Bioscience, Biotechnology, and Biochemistry, 62, 185-187, 1998.
  • [20] Son C, Chung S, Lee J, Kim S. “Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures”. Journal of Microbiology and Biotechnology, 12, 722-728, 2002.
  • [21] Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M. “Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit”. International Journal of Systematic and Evolutionary Microbiology, 55, 2365-2370, 2005.
  • [22] Hungund BS, Gupta SG. “Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple”. World Journal of Microbiology and Biotechnology, 26, 1823-1828, 2010.
  • [23] Suwanposri A, Yukphan P, Yamada Y, Ochaikul D. “Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand”. Maejo International Journal of Science and Technology, 7, 70-82, 2013.
  • [24] Aydin YA, Aksoy ND. “Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A”. Applied Microbiology and Biotechnology, 98, 1065-1075, 2014.
  • [25] Jia S, Ou H, Chen G, Choi D, Cho K, Okabe M, Cha WS. “Cellulose production from Gluconobacter oxydans TQ-B2”. Biotechnology and Bioprocess Engineering, 9, 166-170, 2004.
  • [26] Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. “Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha”. Current Microbiology, 57, 449-453, 2008.
  • [27] Hestrin S, Schramm M. “Synthesis of cellulose by Acetobacter xylinum: 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose”. Biochemical Journal, 58(2), 345-352, 1954.
  • [28] Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M. “The structure and mechanical properties of sheets prepared from bacterial cellulose”. Journal of Materials Science, 24, 3141-3145, 1989.
  • [29] Çakar F, Kati A, Özer I, Demirbağ DD, Şahin F, Aytekin AÖ. “Newly developed medium and strategy for bacterial cellulose production” Biochemical Engineering Journal, 92, 35-40, 2014.
  • [30] McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW. “Mechanical and Structural Properties of Native and Alkali-Treated Bacterial Cellulose Produced by Gluconacetobacter Xylinus Strain ATCC 53524”. Cellulose, 16, 1047-1055, 2009.
  • [31] Braun D, Cherdron H, Rehahn M, Ritter H, Voit,B. Polymer Synthesis: Theory and Practice Fundamentals, Methods, Experiments. 5th ed. Berlin, Germany, Springer, 2013.
  • [32] Filho GR, Monteiro DS, Meireles C, Assunçao RMN, Cerqueira DA, Barud HS, Ribeiro SJ, Messadeq Y. “Synthesis and characterization of cellulose acetate produced from recycled newspaper”. Carbohydrate Polymers, 73(1), 74-82, 2008.
  • [33] Tonouchi N, Horinouchi S, Tsuchida T, Yoshinaga F. “Increased Cellulose Production from Sucrose by Acetobacter after Introducing the Sucrose Phosphorylase Gene”. Bioscience, Biotechnology, and Biochemistry, 62, 1778-1780, 1998.
  • [34] Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, Gómez C, Gañán P, Rojas OJ, Castro C. “Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis”. Materials, 10(639), 1-13, 2017.
  • [35] Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ. “Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524”. Journal of Applied Microbiology, 107, 576-583, 2009.
  • [36] Pourramezan GZ, Roayaei AM, Qezelbash QR. “Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2”. Biotechnology, 8, 150-154, 2009.
  • [37] Çoban EP, Biyik H. “Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5”. African Journal of Biotechnology, 10(27), 5346-5354, 2011.
  • [38] Ishihara M, Matsunaga M, Hayashi N, Tišler V. “Utilization of d-xylose as carbon source for production of bacterial cellulose”. Enzyme and Microbial Technology, 31, 986-991, 2002.
  • [39] Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP. “Gluconacetobacter sacchari: An Efficient Bacterial Cellulose Cell-Factory”. Carbohydrate Polymers, 86, 1417-1420, 2011.
  • [40] Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K. “Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp”. Journal of Bioscience and Bioengineering, 99(4), 415-422, 2005.
  • [41] Jonas R, Farah L. “Production and application of microbial cellulose”. Polymer Degradation and Stability, 59, 101-106, 1998.
  • [42] Seto A, Kojima Y, Tonouchi N, Tsuchida T, Yoshinaga F. “Screening of bacterial cellulose producing Acetobacter strains suitable for sucrose as a carbon source”. Bioscience, Biotechnology, and Biochemistry, 61(4), 735-736, 1997.
  • [43] Masaoka S, Ohe T, Sakota N. “Production of cellulose from glucose by Acetobacter xylinum”. Journal of Fermentation and Bioengineering, 75, 18-22, 1993.
  • [44] Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A. “Bacterial cellulose production from industrial waste and by-product streams”. International Journal of Molecular Sciences, 16, 14832-14849, 2015.
  • [45] Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP. “Utilization of residues from agro-forest industries in the production of high value bacterial cellulose”. Bioresource Technology,102, 7354-7360, 2011.
  • [46] Jung HI, Lee OM, Jeong JH, Jeon YD, Park KH, Kim HS, An WG, Son HJ. “Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium”. Biotechnology and Applied Biochemistry, 162(2), 486-497, 2010.
  • [47] Vazquez A, Foresti ML, Cerrutti P, Galvagno M. “Bacterial cellulose from simple and low-cost production media by Gluconacetobacter xylinus”. Journal of Polymers and the Environment, 21(2), 545-554, 2013.
  • [48] Gayathry G, Gopalaswamy G. “Production and characterization of microbial cellulosic fible from Acetobacter xylinum”. Indian Journal of Fibre and Textile Research, 39, 93-96, 2014.
  • [49] Shaikh HM, Anis A, Poulose AM, Al-Zahrani SM, Madhar NA, Alhamidi A, Aldeligan SH, Alsubaie FS. “Synthesis and characterization of cellulose triacetate obtained from date palm (Phoenix dactylifera L.) trunk mesh-derived cellulose”. Molecules, 27, 1434, 1-13, 2022.
  • [50] De Oliveira SA, da Silva BC, Riegel-Vidotti IC, Urbano A, de Sousa Faria-Tischer PC, Tischer CA. “Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb”. International Journal of Biological Macromolecules, 97, 642-653, 2017.
  • [51] Faria-Tischer PCS, Costa CAR, Tozetti I, Dall’Antonia LH, Vidotti M. “Structure and effects of gold nanoparticles in bacterial cellulose-polyaniline conductive membranes”. RSC Advances, 6, 9571-9580, 2016.
  • [52] George J, Ramana KV, Bawa AS, Siddaramaiah. “Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites”. International Journal of Biological Macromolecules, 48(1), 50-57, 2011.
  • [53] Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Ribeiro SJL. “Thermal characterization of bacterial cellulose-phosphate composite membranes”. Journal of Thermal Analysis and Calorimetry, 87(3), 815-818, 2007.
  • [54] Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W. Comprehensive Cellulose Chemistry. Volume 1: Fundamentals and Analytical Methods. 1st ed. New York, USA, Wiley-VCH, 1998.
  • [55] Halib N, Amin M, Ahmad I. “Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose”. Sains Malaysiana, 41(2), 205-211, 2012.
  • [56] Surma-ślusarska B, Presler S. “Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking”. Fibres and Textiles in Eastern Europe, 16(69), 108-111, 2008.
  • [57] Sun JX, Xu F, Sun XF, Xiao B, Sun RC. “Physico-chemical and thermal characterization of cellulose from barley straw”. Polymer Degradation and Stability, 88(3), 521-531, 2005.
  • [58] Gabbot P. Principles and Applications of Thermal Analysis. 1st ed. Oxford, United Kingdom, Blackwell Publishing Ltd, 2008.
  • [59] Candido RG, Godoy GG, Gonçalves AR. “Characterization and application of cellulose acetate synthesized from sugarcane bagasse”. Carbohydrate Polymers, 167, 280-289, 2017.
  • [60] Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL. “Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose”. Thermochim Acta, 471, 61-69, 2008.
  • [61] Yamamoto H, Horii F, Hirai A. “Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy”. Cellulose, 13, 327-342, 2006.
  • [62] Kim DY, Nishiyama Y, Kuga S. “Surface acetylation of bacterial cellulose”. Cellulose, 9, 361-367, 2002.
  • [63] Tabuchi M, Watanabe K, Morinaga Y, Yoshinaga F. “Acetylation of bacterial cellulose: preparation of cellulose acetate having a high degree of polymerization”. Bioscience, Biotechnology, and Biochemistry, 62(7), 1451-1454, 1998.
  • [64] Kotatha D, Morishima K, Uchida S, Ogino M, Ishikawa M, Futuike T, Tamura H. “Preparation and characterization of gel electrolyte with bacterial cellulose coated with alternating layers of chitosan and alginate for electric double-layer capacitors”. Research on Chemical Intermediates, 44(8), 4971-4987, 2018.
  • [65] Ccorahua R, Troncoso OP, Rodriguez S, Lopez D, Torres FG. “Hydrazine treatment improves conductivity of bacterial cellulose/graphene nanocomposites obtained by a novel processing method”. Carbohydrate Polymers, 171, 68-76, 2017.
  • [66] Zhou ZH, Yang YB, Han YY, Guo QQ, Zhang XX, Lu CH. “In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites”. Carbohydrate Polymers, 177, 241-248, 2017.
  • [67] Lee SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM, Huh JB. “The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration”. The Journal of Advanced Prosthodontics, 7(6), 484-495, 2015.
  • [68] Feng Y, Zhang X, Shen Y, Yoshino K, Feng W. “A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite”. Carbohydrate Polymers, 87(1), 644-649, 2012.
  • [69] Liang HW, Guan QF, Zhu Z, Song LT, Yao HB, Lei X, Yu SH. “Highly conductive and stretchable conductors fabricated from bacterial cellulose”. NPG Asia Materials, 4,(e19), 1-6, 2012.
  • [70] Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z. “The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein 2”. Biomaterials, 33, 6644-6649, 2012.
  • [71] Hu W, Chen S, Yang Z, Liu L, Wang H. “Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline”. The Journal of Physical Chemistry B, 115(26), 8453-8457, 2011.
  • [72] Takanoglu D, Yilmaz K, Ozcan Y, Karabulut O. “Structural, electrical and optical properties of thermally evaporated CdSe and In-doped CdSe thin films”. Chalcogenide Letters, 12, 35-42, 2015.
There are 72 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Nazime Dogan

Burak Top This is me

Naime Nur Bozbeyoğlu Kart

Duygu Takanoğlu Bulut

Orhan Karabulut

Erdal Uğuzdoğan

Publication Date April 30, 2024
Published in Issue Year 2024 Volume: 30 Issue: 2

Cite

APA Dogan, N., Top, B., Bozbeyoğlu Kart, N. N., Takanoğlu Bulut, D., et al. (2024). Production and Characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 271-281.
AMA Dogan N, Top B, Bozbeyoğlu Kart NN, Takanoğlu Bulut D, Karabulut O, Uğuzdoğan E. Production and Characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. April 2024;30(2):271-281.
Chicago Dogan, Nazime, Burak Top, Naime Nur Bozbeyoğlu Kart, Duygu Takanoğlu Bulut, Orhan Karabulut, and Erdal Uğuzdoğan. “Production and Characterization of Bacterial Cellulose from Komagataeibacter Xylinus S4 Strain”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 2 (April 2024): 271-81.
EndNote Dogan N, Top B, Bozbeyoğlu Kart NN, Takanoğlu Bulut D, Karabulut O, Uğuzdoğan E (April 1, 2024) Production and Characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 2 271–281.
IEEE N. Dogan, B. Top, N. N. Bozbeyoğlu Kart, D. Takanoğlu Bulut, O. Karabulut, and E. Uğuzdoğan, “Production and Characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, pp. 271–281, 2024.
ISNAD Dogan, Nazime et al. “Production and Characterization of Bacterial Cellulose from Komagataeibacter Xylinus S4 Strain”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/2 (April 2024), 271-281.
JAMA Dogan N, Top B, Bozbeyoğlu Kart NN, Takanoğlu Bulut D, Karabulut O, Uğuzdoğan E. Production and Characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:271–281.
MLA Dogan, Nazime et al. “Production and Characterization of Bacterial Cellulose from Komagataeibacter Xylinus S4 Strain”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 2, 2024, pp. 271-8.
Vancouver Dogan N, Top B, Bozbeyoğlu Kart NN, Takanoğlu Bulut D, Karabulut O, Uğuzdoğan E. Production and Characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(2):271-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.