Research Article
BibTex RIS Cite

Investigation of the weldability of AISI 430 and HARDOX 500 steels by CMT method

Year 2024, Volume: 30 Issue: 3, 293 - 301, 29.06.2024

Abstract

In this study, AISI-430 and HARDOX 500 steels were welded with Cold Metal Transfer (CMT) welding technique, and the changes in the mechanical properties in the welding and HAZ (Heat Affected Zone) regions were investigated. 100x130x6 mm AISI 430 and HARDOX 500 steels were cut in standard sizes with a band saw and joined by the CMT method using AWS 307 additional wire. The mechanical properties and microstructural changes of the welded areas were investigated by various analyses, microhardness, notch impact, and tensile tests, and the ruptured surfaces of the test specimens after the tensile test were investigated by SEM analysis. Welding was carried out at 140 A, 130 A, and 120 A current. 97.5% Argon and 2.5% CO2 gas were used as shielding gas. It has been determined that there are differences in morphology from the optical images after welding. Coarse grains were formed in the HAZ regions but were limited to the low-temperature input of the CMT welding. According to the EDS analysis results, it has been determined that there are atomic transitions between the regions. In the hardness analysis, there was a slight decrease in hardness in the HAZ regions compared to the base metals. In the tensile test, all 3 samples broke from the AISI 430 main material part. Elongation amounts were measured between 16.81 and 17.90 mm, and tensile strengths were measured between 417 and 441 MPa. As a result of the study, it has been revealed that the mechanical properties of AISI 430 and HARDOX 500 steels combined with CMT Welding have increased significantly in the weld zone and weldability is possible.

References

  • [1] Yürük A. “TIG kaynak parametrelerinin AISI 316L paslanmaz çeliğinin mikro yapı ve mekanik özelliklerine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(1), 76-85, 2023.
  • [2] Kannan AR, Shanmugam NS, Naveenkumar S. “Effect of arc length correction on weld bead geometry and mechanical properties of AISI 316L weldments by cold metal transfer (CMT) process”. Materials Today: Proceedings, 18(7), 3916-392, 2019.
  • [3] Güngör B, Kaluc E, Taban E, Sık AŞŞ. “Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys”. Materials and Design, 54, 207-211, 2014.
  • [4] Bellamkonda PN, Sudersanan M, Visvalingam B. “Mechanical properties of wire arc additive manufactured carbon steel cylindrical component made by cold metal transferred arc welding process”. Materials Testing, 64(2), 260-271, 2022.
  • [5] Selvi S, Vishvaksenan A, Rajasekar E. “Cold metal transfer (CMT) technology-An overview”. Defence Technology, 14(1), 28-44, 2018.
  • [6] Venukumar S, Cheepu M, Vijayababu T, Venkateswarlu D. “Cold Metal Transfer (CMT) Welding of Dissimilar Materials: An Overview”. Materials Science Forum, 969, 685-690, 2019.
  • [7] Çuğ H, Dağlar F. “AISI304L ve AISI430 kalite paslanmaz çeliklerin nokta direnç kaynak kabiliyetine ilave yapıştırıcının etkisi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 1586-1603, 2020.
  • [8] Savaş A. MIG Kaynak Yöntemiyle Birleştirilen HARDOX 400, AISI 304L VE ST52 Kalite Çeliklerin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi.” Yüksek Lisans Tezi, Karabük Üniversitesi, Lisansüstü Eğitim Enstitüsü, Makine Mühendisliği Anabilim Dalı, 2021.
  • [9] Lakshminarayanan AK, Shanmugam K, Balasubramanian V. “Effect of autogenous arc welding processes on tensile and impact properties of ferritic stainless steel joints”. Journal of Iron and Steel Research International, 16(1), 62-68, 2009.
  • [10] Salman BA, Ali HM, Mohammed SS. “Influence of welding process and electrode material on the corrosion characteristics of AISI 304 and AISI 316 weldments”. Engineering Research Journal (ERJ), 1(459), 7-12, 2020.
  • [11] Ongun A, Uzun İ, Turgut OK. “Elektrik ark ve gazaltı kaynağı (MIG) ile birleştirilmiş AISI 1040 çeliğinin mekanik özelliklerine, çeşitli ısıl işlemlerin etkisinin incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(1), 1-5, 2017.
  • [12] Mezrag B, Deschaux-Beaume F, Benachour M. “Control of mass and heat transfer for steel/aluminium joining using cold metal transfer process”. Science and Technology of Welding and Joining, 20(3), 189-198, 2015.
  • [13] Bensaid K, Dhiflaoui H, Bouzaiene H, Yahyaoui H, Fredj NB. “Effects of the cooling mode on the integrity and the multi-pass micro-scratching wear resistance of HARDOX 500 ground surfaces”. The International Journal of Advanced Manufacturing Technology, 113(9), 2865-2882, 2021.
  • [14] Teker T, Gençdoğan D. “Phase and chemical structure characterization in double sided TIG arc welding of HARDOX 450 and AISI 430 steel”. Cumhuriyet Science Journal, 41(4), 987-994, 2020.
  • [15] Teker T, Kurşun T. “Weldability of AISI 430/AISI 1030 steel couples via the synergic controlled pulsed (GMAW-P) and manual gas metal ARC (GMAW) welding techniques”. Materials and Manufacturing Processes, 26, 926-932, 2011.
  • [16] Teker T, Gençdoğan D. “Heat affected zone and weld metal analysis of HARDOX 450 and ferritic stainless steel double sided TIG-joints”. Materials Testing 63(10), 923-928, 2021.
  • [17] Nagasai BP, Malarvizhi S, Balasubramanian V. “Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique”. CIRP Journal of Manufacturing Science and Technology, 36, 100-116, 2022.
  • [18] Magowan S. Effects of Cold Metal Transfer Welding on Properties of Ferritic Stainless Steel. PhD Thesis, Sheffield Hallam University, United Kingdom, 2017.
  • [19] American Society for Testing and Materials. “E8M-04. Standard Test Methods for Tension Testing of Metallic Materials”. West Conshohocken, ASTM International, PA, USA, 2004.
  • [20] American Society for Testing and Materials. “E23-06. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials”. West Conshohocken, ASTM International, PA, USA, 2006.
  • [21] Verma J, Taiwade RV, Khatirkar RK, Kumar A. “A Comparative study on the effect of electrode on microstructure and mechanical properties of dissimilar welds of 2205 austeno-ferritic and 316L austenitic stainless steel”. Materials Transactions, 57(4), 494-500, 2016.
  • [22] Lin C, Liu J, Tsai H, Cheng C. “Evolution of microstructures and mechanical properties of AZ31B magnesium alloy weldment with active oxide fluxes and GTAW process”. Journal of the Chinese Institute of Engineers, 34(8), 1013-1023, 2011.
  • [23] Alizadeh-Sh M, Marashi SPH, Pouranvari M. “Resistance spot welding of AISI 430 ferritic stainless steel: phase transformations and mechanical properties”. Materials and Design, 56, 258-263, 2014.
  • [24] Westraadt JE, Goosen WE, Kostka A, Wang H, Eggeler G. “Modified Z-phase formation in a 12% Cr tempered martensite ferritic steel during long-term creep”. Materials Science and Engineering: A, 855, 143857, 2022.
  • [25] Kostka A, Tak KG, Hellmig RJ, Estrin Y, Eggeler G. “On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels”. Acta Materialia, 55(2), 539-550, 2007.
  • [26] Teker T. “The effect of austenitic interlayer on microstructure and mechanical behaviors in keyhole plasma transfer arc welding of ferritic stainless steel couple”. The International Journal of Advanced Manufacturing Technology, 69(5), 1833-1840, 2013.
  • [27] Sathiya P, Aravindan S, Noorul Haq A. “Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel”. The International Journal of Advanced Manufacturing Technology, 31(11), 1076-1082, 2007.
  • [28] Muralimohan CH, Muthupandi V. “Friction welding of type 304 stainless steel to Cp titanium using nickel interlayer”. Advanced Materials Research, 794, 351-57, 2013.
  • [29] Teker T. “Effect of melt-in and key-hole modes on the structure and mechanical properties of AISI 430 steel welded using plasma transfer arc welding”. Physics of Metals and Metallography, 119(7), 669-677, 2018.

AISI 430 ve HARDOX 500 çeliklerinin CMT yöntemi ile kaynaklanabilirliğinin araştırılması

Year 2024, Volume: 30 Issue: 3, 293 - 301, 29.06.2024

Abstract

Bu çalışmada AISI-430 ve HARDOX 500 çelikleri Cold Metal Transfer (CMT) kaynak tekniği ile kaynak edilmiş, kaynak ve ITAB (Isı Tesiri Altındaki Bölge) bölgelerindeki mekanik özelliklerinde meydana gelen değişimler incelenmiştir. 100x130x6 mm boyutlarındaki AISI 430 ve HARDOX 500 çelikleri, şerit testere ile standart ebatlarda kesilerek, AWS 307 ilave tel kullanılarak CMT yöntemi ile birleştirilmiştir. Kaynaklı bölgelerin mekanik özellikleri ve mikroyapısal değişimleri çeşitli analizlerle ve mikrosertlik, çentik darbe ve çekme testleriyle ve deney numunelerinin çekme testinden sonra kopan yüzeyleri SEM analizleri ile incelenmiştir. Kaynak işlemi 140 A, 130 A ve 120 A akımlarda gerçekleştirilmiştir. Koruyucu gaz olarak %97.5 Argon ve %2.5 CO2 gazı kullanılmıştır. Kaynak sonrası optik görüntülerden morfolojilerdeki farklılıkların oluştuğu tespit edilmiştir. ITAB bölgelerinde kaba taneler oluşmuş, ancak bunlar CMT kaynağının düşük sıcaklık girdisi ile sınırlı miktarlarda kalmıştır. EDS analiz sonuçlarına göre bölgeler arasında atom geçişleri olduğu tespit edilmiştir. Sertlik analizinde, ITAB bölgelerinde ana metallere göre bir miktar sertlikte düşüş olmuştur. Çekme deneyinde 3 numune de AISI 430 ana malzeme kısmından kopmuştur. Uzama miktarları; 16.81 ile 17.90 mm arasında, çekme mukavemetleri de 417 ile 441 MPa arasında ölçülmüştür. Çalışma sonucunda CMT Kaynağı ile birleştirilen AISI 430 ve HARDOX 500 çeliklerinin kaynak bölgesindeki mekanik özelliklerinin önemli ölçüde arttığı ve kaynak edilebilirliğin mümkün olduğu ortaya konmuştur.

References

  • [1] Yürük A. “TIG kaynak parametrelerinin AISI 316L paslanmaz çeliğinin mikro yapı ve mekanik özelliklerine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(1), 76-85, 2023.
  • [2] Kannan AR, Shanmugam NS, Naveenkumar S. “Effect of arc length correction on weld bead geometry and mechanical properties of AISI 316L weldments by cold metal transfer (CMT) process”. Materials Today: Proceedings, 18(7), 3916-392, 2019.
  • [3] Güngör B, Kaluc E, Taban E, Sık AŞŞ. “Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys”. Materials and Design, 54, 207-211, 2014.
  • [4] Bellamkonda PN, Sudersanan M, Visvalingam B. “Mechanical properties of wire arc additive manufactured carbon steel cylindrical component made by cold metal transferred arc welding process”. Materials Testing, 64(2), 260-271, 2022.
  • [5] Selvi S, Vishvaksenan A, Rajasekar E. “Cold metal transfer (CMT) technology-An overview”. Defence Technology, 14(1), 28-44, 2018.
  • [6] Venukumar S, Cheepu M, Vijayababu T, Venkateswarlu D. “Cold Metal Transfer (CMT) Welding of Dissimilar Materials: An Overview”. Materials Science Forum, 969, 685-690, 2019.
  • [7] Çuğ H, Dağlar F. “AISI304L ve AISI430 kalite paslanmaz çeliklerin nokta direnç kaynak kabiliyetine ilave yapıştırıcının etkisi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 1586-1603, 2020.
  • [8] Savaş A. MIG Kaynak Yöntemiyle Birleştirilen HARDOX 400, AISI 304L VE ST52 Kalite Çeliklerin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi.” Yüksek Lisans Tezi, Karabük Üniversitesi, Lisansüstü Eğitim Enstitüsü, Makine Mühendisliği Anabilim Dalı, 2021.
  • [9] Lakshminarayanan AK, Shanmugam K, Balasubramanian V. “Effect of autogenous arc welding processes on tensile and impact properties of ferritic stainless steel joints”. Journal of Iron and Steel Research International, 16(1), 62-68, 2009.
  • [10] Salman BA, Ali HM, Mohammed SS. “Influence of welding process and electrode material on the corrosion characteristics of AISI 304 and AISI 316 weldments”. Engineering Research Journal (ERJ), 1(459), 7-12, 2020.
  • [11] Ongun A, Uzun İ, Turgut OK. “Elektrik ark ve gazaltı kaynağı (MIG) ile birleştirilmiş AISI 1040 çeliğinin mekanik özelliklerine, çeşitli ısıl işlemlerin etkisinin incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(1), 1-5, 2017.
  • [12] Mezrag B, Deschaux-Beaume F, Benachour M. “Control of mass and heat transfer for steel/aluminium joining using cold metal transfer process”. Science and Technology of Welding and Joining, 20(3), 189-198, 2015.
  • [13] Bensaid K, Dhiflaoui H, Bouzaiene H, Yahyaoui H, Fredj NB. “Effects of the cooling mode on the integrity and the multi-pass micro-scratching wear resistance of HARDOX 500 ground surfaces”. The International Journal of Advanced Manufacturing Technology, 113(9), 2865-2882, 2021.
  • [14] Teker T, Gençdoğan D. “Phase and chemical structure characterization in double sided TIG arc welding of HARDOX 450 and AISI 430 steel”. Cumhuriyet Science Journal, 41(4), 987-994, 2020.
  • [15] Teker T, Kurşun T. “Weldability of AISI 430/AISI 1030 steel couples via the synergic controlled pulsed (GMAW-P) and manual gas metal ARC (GMAW) welding techniques”. Materials and Manufacturing Processes, 26, 926-932, 2011.
  • [16] Teker T, Gençdoğan D. “Heat affected zone and weld metal analysis of HARDOX 450 and ferritic stainless steel double sided TIG-joints”. Materials Testing 63(10), 923-928, 2021.
  • [17] Nagasai BP, Malarvizhi S, Balasubramanian V. “Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique”. CIRP Journal of Manufacturing Science and Technology, 36, 100-116, 2022.
  • [18] Magowan S. Effects of Cold Metal Transfer Welding on Properties of Ferritic Stainless Steel. PhD Thesis, Sheffield Hallam University, United Kingdom, 2017.
  • [19] American Society for Testing and Materials. “E8M-04. Standard Test Methods for Tension Testing of Metallic Materials”. West Conshohocken, ASTM International, PA, USA, 2004.
  • [20] American Society for Testing and Materials. “E23-06. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials”. West Conshohocken, ASTM International, PA, USA, 2006.
  • [21] Verma J, Taiwade RV, Khatirkar RK, Kumar A. “A Comparative study on the effect of electrode on microstructure and mechanical properties of dissimilar welds of 2205 austeno-ferritic and 316L austenitic stainless steel”. Materials Transactions, 57(4), 494-500, 2016.
  • [22] Lin C, Liu J, Tsai H, Cheng C. “Evolution of microstructures and mechanical properties of AZ31B magnesium alloy weldment with active oxide fluxes and GTAW process”. Journal of the Chinese Institute of Engineers, 34(8), 1013-1023, 2011.
  • [23] Alizadeh-Sh M, Marashi SPH, Pouranvari M. “Resistance spot welding of AISI 430 ferritic stainless steel: phase transformations and mechanical properties”. Materials and Design, 56, 258-263, 2014.
  • [24] Westraadt JE, Goosen WE, Kostka A, Wang H, Eggeler G. “Modified Z-phase formation in a 12% Cr tempered martensite ferritic steel during long-term creep”. Materials Science and Engineering: A, 855, 143857, 2022.
  • [25] Kostka A, Tak KG, Hellmig RJ, Estrin Y, Eggeler G. “On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels”. Acta Materialia, 55(2), 539-550, 2007.
  • [26] Teker T. “The effect of austenitic interlayer on microstructure and mechanical behaviors in keyhole plasma transfer arc welding of ferritic stainless steel couple”. The International Journal of Advanced Manufacturing Technology, 69(5), 1833-1840, 2013.
  • [27] Sathiya P, Aravindan S, Noorul Haq A. “Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel”. The International Journal of Advanced Manufacturing Technology, 31(11), 1076-1082, 2007.
  • [28] Muralimohan CH, Muthupandi V. “Friction welding of type 304 stainless steel to Cp titanium using nickel interlayer”. Advanced Materials Research, 794, 351-57, 2013.
  • [29] Teker T. “Effect of melt-in and key-hole modes on the structure and mechanical properties of AISI 430 steel welded using plasma transfer arc welding”. Physics of Metals and Metallography, 119(7), 669-677, 2018.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Mustafa Engin Kocadağistan

Oğuzhan Çinar This is me

Publication Date June 29, 2024
Published in Issue Year 2024 Volume: 30 Issue: 3

Cite

APA Kocadağistan, M. E., & Çinar, O. (2024). AISI 430 ve HARDOX 500 çeliklerinin CMT yöntemi ile kaynaklanabilirliğinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 293-301.
AMA Kocadağistan ME, Çinar O. AISI 430 ve HARDOX 500 çeliklerinin CMT yöntemi ile kaynaklanabilirliğinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. June 2024;30(3):293-301.
Chicago Kocadağistan, Mustafa Engin, and Oğuzhan Çinar. “AISI 430 Ve HARDOX 500 çeliklerinin CMT yöntemi Ile kaynaklanabilirliğinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 3 (June 2024): 293-301.
EndNote Kocadağistan ME, Çinar O (June 1, 2024) AISI 430 ve HARDOX 500 çeliklerinin CMT yöntemi ile kaynaklanabilirliğinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 3 293–301.
IEEE M. E. Kocadağistan and O. Çinar, “AISI 430 ve HARDOX 500 çeliklerinin CMT yöntemi ile kaynaklanabilirliğinin araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp. 293–301, 2024.
ISNAD Kocadağistan, Mustafa Engin - Çinar, Oğuzhan. “AISI 430 Ve HARDOX 500 çeliklerinin CMT yöntemi Ile kaynaklanabilirliğinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/3 (June 2024), 293-301.
JAMA Kocadağistan ME, Çinar O. AISI 430 ve HARDOX 500 çeliklerinin CMT yöntemi ile kaynaklanabilirliğinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:293–301.
MLA Kocadağistan, Mustafa Engin and Oğuzhan Çinar. “AISI 430 Ve HARDOX 500 çeliklerinin CMT yöntemi Ile kaynaklanabilirliğinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, 2024, pp. 293-01.
Vancouver Kocadağistan ME, Çinar O. AISI 430 ve HARDOX 500 çeliklerinin CMT yöntemi ile kaynaklanabilirliğinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(3):293-301.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif