Research Article
BibTex RIS Cite

Numerical modeling of temperature distribution in a high temperature sintering furnace

Year 2024, Volume: 30 Issue: 5, 595 - 601, 30.10.2024

Abstract

The development of new energy management systems for sintering processes with high energy consumption and generally carried out with traditional recipes has become an important research topic nowadays. It has been focused on homogeneous temperature distribution in the furnace used in the sintering process. If the temperature difference is high in the furnace, the internal structure of the materials can show serious changes. In this study, transient numerical design and analysis were carried out from room temperature to 1100 °C. The temperature changes of the samples placed at different locations in the furnace with the dimensions of 1070x1580x1030 mm were numerically investigated as transiently. In numerical studies, room temperature and initial furnace temperature were defined as the initial conditions. The boundary conditions are given as heat flux on the heater surfaces and convection outside the furnace. At the end of numerical solutions, temperature values were found inside the furnace and on the samples transiently. It was showed that the temperature differences between the samples were high that is expected at the beginning, but these differences decreased to about 17 °C in the steady conditions. Unlike the studies in the literature, the condition of the samples in a protected chamber, not under the influence of direct radiation, was examined and it was observed that the temperature differences decreased by up to 2 °C. In the analysis, time-dependent temperature distributions and temperature differences are given comparatively for two different cases.

References

  • [1] Kang J, Rong Y. “Modeling and simulation of load heating in heat treatment furnaces”. Journal of Materials Processing Technology, 174(1-3), 109-114, 2006.
  • [2] Mariños Rosado DJ, Rojas Chávez SB, Amaro Gutierrez J, Mayworm de Araújo FH, Carvalho JA, Mendiburu AZ. “Energetic analysis of reheating furnaces in the combustion of coke oven gas, Linz-Donawitz gas and blast furnace gas in the steel industry”. Applied Thermal Engineering, 169, 1-15, 2020.
  • [3] Xiu H, Xu T, Tang J, Fan L, Xu T, Yoshino T. “Research on the temperature uniformity of vacuum furnace and size optimization of working zone”. Intelligent Computation Technology and Automation. International Conference 8th, Nanchang, China, 14-15 June 2015.
  • [4] Najib AM, Abdullah MZ, Khor CY, Saad AA. “Experimental and numerical investigation of 3D gas flow temperature field in infrared heating reflow oven with circulating fan”. International Journal of Heat and Mass Transfer, 87, 49-58, 2015.
  • [5] Smolka J, Bulinski Z, Nowak AJ. “The experimental validation of a CFD model for a heating oven with natural air circulation”. Applied 54(2), 387-398, 2013.
  • [6] Rek Z, Rudolf M, Zun I. “Application of CFD simulation in the development of a new generation heating oven”. Strojniski Vestnik-Journal of Mechanical Engineering, 58(2), 134-144, 2012.
  • [7] Minea AA. “An experimental method to decrease heating time in a commercial furnace”. Experimental Heat Transfer, 23(3), 175-184, 2010.
  • [8] Yuan XN, Aminossadati SM, Huo SH, Schaffer GB, Qian M. “The effects of sample position and gas flow pattern on the sintering of a 7xxx aluminum alloy”. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 43(11), 4345-4355, 2012.
  • [9] Manière C, Zahrah T, Olevsky EA. “Fluid dynamics thermomechanical simulation of sintering: Uniformity of temperature and density distributions”. Applied Thermal Engineering, 123, 603-613, 2017.
  • [10] Wang Y, Liu Z. “Development of Numerical Modeling and Temperature Controller Optimization for Internal Heating Vacuum Furnace”. 9, 126765-126773, 2021. IEEE Access,
  • [11] Wang Z, Shang X. “The simulation and experiment study on the gas flow in the no-loaded and cold vacuum highpressure gas quenching furnace”. Measuring Technology and Mechatronics Automation, 48-49, 1310-1314, 2011.
  • [12] Cosentino F, Warnken N, Gebelin JC, Reed RC. “Numerical modeling of vacuum heat treatment of nickel-based superalloys”. Metallurgical and Materials Transactions APhysical Metallurgy 44(11), 5154-5164, 2013. and Materials Science,
  • [13] Li J, Liu J, Tian Y, Wang H, Li Y, Wang Z. “Experimental and numerical study on optimization of heating process for small-sized workpieces in vacuum heat treatment furnace”. Heat and Mass Transfer, 55(5), 1419-1426, 2019.
  • [14] Hao X, Gu J, Chen N, Zhang W, Zuo X. “3-D Numerical analysis on heating process of loads within vacuum heat treatment furnace”. Applied Thermal Engineering, 28(14-15), 1925-1931, 2008.
  • [15] Li ZZ, Shen YD, Heo KS, Lee JW, Seol SY, Byun YH, Lee CJ. “Feasible optimal design of high temperature vacuum furnace using experiences and thermal analysis database”. Journal of Thermal Science and Technology, 2(1), 123-133, 2007.
  • [16] Li ZZ, Li Y, Shen Y De, Lee JW. “Performance prediction of large scale vacuum furnace using thermal analysis”. 2010 2nd International Conference on Information Technology Convergence and Services, ITCS 2010, Kiev, Ukraine, 26 August 2010.
  • [17] Navaneethakrishnan P, Srinivasan PSS, Dhandapani S. “Numerical Food and experimental investigation of temperature distribution inside a heating oven”. Journal Of Processing 34(2), 275-288, 2010. and Preservation,
  • [18] Bohlooli Arkhazloo N, Bouissa Y, Bazdidi-Tehrani F, Jadidi M, Morin JB, Jahazi M. “Experimental and unsteady CFD analyses of the heating process of large size forgings in a gas-fired furnace”. Case Studies in Thermal Engineering, 14, 1-12, 2019.
  • [19] Minea AA. “A comparison study on experimental heat transfer enhancement on different furnaces enclosures”. Heat and Mass Transfer, 48(11), 1837-1845, 2012.
  • [20] Oh J, Han U, Park J, Lee H. “Numerical investigation on energy performance of hot stamping furnace”. Applied Thermal Engineering, 147, 694-706, 2019.
  • [21] Liu J, Li J, Wang Z, Tian Y, Wang H. “The optimization of heating process for bearing rings in a vacuum furnace based on numerical analysis”. Iron and Steel Institute of Japan International, 61(1), 302-308, 2021.
  • [22] Özçatal M, Başpınar MS. “SiO2 katkısının Al2TiO5 seramiklerinin fiziksel özelliklerine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 594-598, 2020.

Yüksek sıcaklıklı sinterleme fırınında sıcaklık dağılımının sayısal olarak modellenmesi

Year 2024, Volume: 30 Issue: 5, 595 - 601, 30.10.2024

Abstract

Yüksek enerji tüketiminin olduğu ve genelde geleneksel reçeteler ile sürdürülen sinterleme prosesleri için yeni enerji yönetim sistemlerinin geliştirilmesi günümüzde önemli bir araştırma konusu haline gelmiştir. Sinterleme işleminde kullanılan fırın içerisinde homojen bir sıcaklık dağılımı için sayısal modellemeler üzerine yoğunlaşılmıştır. Sıcaklık farkının yüksek olduğu durumlarda fırın içerisinde bulunan malzemelerin iç yapısı ciddi değişiklikler gösterebilmektedir. Bu çalışmada oda sıcaklığından 1100 °C sıcaklığa kadar zamana bağlı bir sayısal tasarım ve analiz gerçekleştirilmiştir. 1070x1580x1030 mm boyutlarındaki fırın içerisinde farklı konumlara yerleştirilen numunelerin zamana bağlı olarak sıcaklık değişimleri sayısal olarak incelenmiştir. Sayısal çalışmalarda başlangıç koşulları olarak oda sıcaklığı ve başlangıç fırın sıcaklığı tanımlanmıştır. Sınır şartları olarak ise ısıtıcı yüzeylerinde ısı akısı ve fırın dışında taşınım olarak verilmiştir. Sayısal hesaplamalar sonunda zamana bağlı olarak fırın içerisinde ve numunelerin üzerinde sıcaklık değerleri bulunmuştur. Zamana bağlı olarak numuneler arasındaki sıcaklık farkları başlangıçta beklenildiği gibi yüksek ancak kararlı hale gelindiğinde bu farkların 17 °C’ye kadar düştüğü gözlemlenmiştir. Literatürdeki çalışmalardan farklı olarak numunelerin doğrudan ışınım etkisi altında olmayıp korunaklı bir hazne içerisindeki durumu incelenmiş, sıcaklık farklarının 2 °C kadar düştüğü görülmüştür. İki farklı durum için yapılan analizde zamana bağlı sıcaklık dağılımları ve sıcaklık farkları karşılaştırmalı olarak verilmiştir.

References

  • [1] Kang J, Rong Y. “Modeling and simulation of load heating in heat treatment furnaces”. Journal of Materials Processing Technology, 174(1-3), 109-114, 2006.
  • [2] Mariños Rosado DJ, Rojas Chávez SB, Amaro Gutierrez J, Mayworm de Araújo FH, Carvalho JA, Mendiburu AZ. “Energetic analysis of reheating furnaces in the combustion of coke oven gas, Linz-Donawitz gas and blast furnace gas in the steel industry”. Applied Thermal Engineering, 169, 1-15, 2020.
  • [3] Xiu H, Xu T, Tang J, Fan L, Xu T, Yoshino T. “Research on the temperature uniformity of vacuum furnace and size optimization of working zone”. Intelligent Computation Technology and Automation. International Conference 8th, Nanchang, China, 14-15 June 2015.
  • [4] Najib AM, Abdullah MZ, Khor CY, Saad AA. “Experimental and numerical investigation of 3D gas flow temperature field in infrared heating reflow oven with circulating fan”. International Journal of Heat and Mass Transfer, 87, 49-58, 2015.
  • [5] Smolka J, Bulinski Z, Nowak AJ. “The experimental validation of a CFD model for a heating oven with natural air circulation”. Applied 54(2), 387-398, 2013.
  • [6] Rek Z, Rudolf M, Zun I. “Application of CFD simulation in the development of a new generation heating oven”. Strojniski Vestnik-Journal of Mechanical Engineering, 58(2), 134-144, 2012.
  • [7] Minea AA. “An experimental method to decrease heating time in a commercial furnace”. Experimental Heat Transfer, 23(3), 175-184, 2010.
  • [8] Yuan XN, Aminossadati SM, Huo SH, Schaffer GB, Qian M. “The effects of sample position and gas flow pattern on the sintering of a 7xxx aluminum alloy”. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 43(11), 4345-4355, 2012.
  • [9] Manière C, Zahrah T, Olevsky EA. “Fluid dynamics thermomechanical simulation of sintering: Uniformity of temperature and density distributions”. Applied Thermal Engineering, 123, 603-613, 2017.
  • [10] Wang Y, Liu Z. “Development of Numerical Modeling and Temperature Controller Optimization for Internal Heating Vacuum Furnace”. 9, 126765-126773, 2021. IEEE Access,
  • [11] Wang Z, Shang X. “The simulation and experiment study on the gas flow in the no-loaded and cold vacuum highpressure gas quenching furnace”. Measuring Technology and Mechatronics Automation, 48-49, 1310-1314, 2011.
  • [12] Cosentino F, Warnken N, Gebelin JC, Reed RC. “Numerical modeling of vacuum heat treatment of nickel-based superalloys”. Metallurgical and Materials Transactions APhysical Metallurgy 44(11), 5154-5164, 2013. and Materials Science,
  • [13] Li J, Liu J, Tian Y, Wang H, Li Y, Wang Z. “Experimental and numerical study on optimization of heating process for small-sized workpieces in vacuum heat treatment furnace”. Heat and Mass Transfer, 55(5), 1419-1426, 2019.
  • [14] Hao X, Gu J, Chen N, Zhang W, Zuo X. “3-D Numerical analysis on heating process of loads within vacuum heat treatment furnace”. Applied Thermal Engineering, 28(14-15), 1925-1931, 2008.
  • [15] Li ZZ, Shen YD, Heo KS, Lee JW, Seol SY, Byun YH, Lee CJ. “Feasible optimal design of high temperature vacuum furnace using experiences and thermal analysis database”. Journal of Thermal Science and Technology, 2(1), 123-133, 2007.
  • [16] Li ZZ, Li Y, Shen Y De, Lee JW. “Performance prediction of large scale vacuum furnace using thermal analysis”. 2010 2nd International Conference on Information Technology Convergence and Services, ITCS 2010, Kiev, Ukraine, 26 August 2010.
  • [17] Navaneethakrishnan P, Srinivasan PSS, Dhandapani S. “Numerical Food and experimental investigation of temperature distribution inside a heating oven”. Journal Of Processing 34(2), 275-288, 2010. and Preservation,
  • [18] Bohlooli Arkhazloo N, Bouissa Y, Bazdidi-Tehrani F, Jadidi M, Morin JB, Jahazi M. “Experimental and unsteady CFD analyses of the heating process of large size forgings in a gas-fired furnace”. Case Studies in Thermal Engineering, 14, 1-12, 2019.
  • [19] Minea AA. “A comparison study on experimental heat transfer enhancement on different furnaces enclosures”. Heat and Mass Transfer, 48(11), 1837-1845, 2012.
  • [20] Oh J, Han U, Park J, Lee H. “Numerical investigation on energy performance of hot stamping furnace”. Applied Thermal Engineering, 147, 694-706, 2019.
  • [21] Liu J, Li J, Wang Z, Tian Y, Wang H. “The optimization of heating process for bearing rings in a vacuum furnace based on numerical analysis”. Iron and Steel Institute of Japan International, 61(1), 302-308, 2021.
  • [22] Özçatal M, Başpınar MS. “SiO2 katkısının Al2TiO5 seramiklerinin fiziksel özelliklerine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 594-598, 2020.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Türker Akkoyunlu

İbrahim Uzun

Hüsamettin Tan

Publication Date October 30, 2024
Published in Issue Year 2024 Volume: 30 Issue: 5

Cite

APA Akkoyunlu, T., Uzun, İ., & Tan, H. (2024). Numerical modeling of temperature distribution in a high temperature sintering furnace. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(5), 595-601.
AMA Akkoyunlu T, Uzun İ, Tan H. Numerical modeling of temperature distribution in a high temperature sintering furnace. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October 2024;30(5):595-601.
Chicago Akkoyunlu, Türker, İbrahim Uzun, and Hüsamettin Tan. “Numerical Modeling of Temperature Distribution in a High Temperature Sintering Furnace”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 5 (October 2024): 595-601.
EndNote Akkoyunlu T, Uzun İ, Tan H (October 1, 2024) Numerical modeling of temperature distribution in a high temperature sintering furnace. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 5 595–601.
IEEE T. Akkoyunlu, İ. Uzun, and H. Tan, “Numerical modeling of temperature distribution in a high temperature sintering furnace”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 5, pp. 595–601, 2024.
ISNAD Akkoyunlu, Türker et al. “Numerical Modeling of Temperature Distribution in a High Temperature Sintering Furnace”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/5 (October 2024), 595-601.
JAMA Akkoyunlu T, Uzun İ, Tan H. Numerical modeling of temperature distribution in a high temperature sintering furnace. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:595–601.
MLA Akkoyunlu, Türker et al. “Numerical Modeling of Temperature Distribution in a High Temperature Sintering Furnace”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 5, 2024, pp. 595-01.
Vancouver Akkoyunlu T, Uzun İ, Tan H. Numerical modeling of temperature distribution in a high temperature sintering furnace. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(5):595-601.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif