Araştırma Makalesi
BibTex RIS Kaynak Göster

Alüminyum elektrotun farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna uygulanması

Yıl 2024, Cilt: 30 Sayı: 6, 819 - 827, 29.11.2024

Öz

Bu çalışmada alüminyum elektrotun farklı bağlanma şekilleri
kullanılarak elektrokoagülasyon yöntemi ile çamaşırhane atıksuyunun
arıtımı incelenmiştir. Çamaşır yıkama suları belirli oranlarda (ön
yıkama, ana yıkama ve durulama sonrası atıksular 1:1:1,5 oranında)
karıştırılarak atıksuyun karakterizasyonu yapılmıştır. Anot ve katot
olarak kullanılan alüminyum elektrotun farklı bağlanma şekillerinde,
monopolar paralel (MP-P), monopolar seri (MP-S) ve bipolar paralel
(BP-P) ile arıtım gerçekleştirilmiştir. Her bir bağlanma şekillerinde pH,
akım yoğunluğu ve süre gibi proses değişkenlerinin MBAS, KOİ ve
bulanıklık giderimi üzerine etkileri incelenmiştir. Yapılan denemelerde
maksimum giderim verimi KOİ, MBAS, bulanıklık için sırasıyla; %80,
%97, %97 değerleri ile MP-P bağlanma şeklinde pH 5.5 değerinde 15 dk.
süre ve 5 mA/cm2 akım yoğunluğunda elde edilmiştir. Monopolar
paralel bağlantı şekli ile çalışılan sistemde optimum giderim koşulları
pH 5.5, süre 15 dk. akım yoğunluğu 5 mA/cm2
, sıcaklık 25 ○C ve
karıştırma hızı 200 rpm bulunmuştur. Optimum giderim verimleri ise
MBAS, KOİ, bulanıklık için sırasıyla; %97, %80, %96 değerleri tespit
edilmiştir.

Kaynakça

  • [1] Pakula C, Stamminger R. “Electricity and water consumption for laundry washing by washing machine worldwide”. Journal of Energy Efficiency, 3(4), 365-82, 2010.
  • [2] Janpoor F, Torabian A, Khatibikamal V. “Treatment of laundry waste-water by electrocoagulation”. Journal of Chemical Technology & Biotechnology, 86(8), 1113-1120, 2011.
  • [3] Ciabattia I, Cesaro F, Faralli L, Fatarella E, Tognotti F. “Demonstration of a treatment system for purification and reuse of laundry wastewater.” Journal of Desalination, 245(1-3),451-59, 2009.
  • [4] Manouchehri M, Kargari A. “Water recovery from laundry wastewater by the cross flow microfiltration process: a strategy for water recycling in residential buildings.” Journal of Cleaner Production, 168, 227-38, 2017.
  • [5] Ramcharan T, Bissessur A. “Analysis of linear alkylbenzene sulfonate in laundry wastewater by hplc-uv and uv-vis spectrophotometry”. Journal of Surfactants and Detergents, 19(1), 209-218, 2016.
  • [6] Huang AK., Veit MT, Juchen PT, Gonçalves GDC, Palácio SM, Cardoso CDO. “Sequential process of coagulation/flocculation/sedimentation-adsorptionmicrofiltration for laundry effluent treatment”. Journal of Environmental Chemical Engineering, 7(4), 1-7, 2019.
  • [7] Centurion VB, Moura AGL, Delforno TP, Okada DY, Dos Santos VP, Varesche MBA, Oliveira VM. “Anaerobic codigestion of commercial laundry wastewater and domestic sewage in a pilot-scale egsb reactor: the influence of surfactant concentration on microbial diversity”. International Biodeterioration & Biodegradation, 127, 77-86, 2018.
  • [8] Khosravanipour M, Benguit AT, Carabin A, Drogui P, Brien E. ”Development of combined membrane filtration, electrochemical technologies, and adsorption processes for treatment and reuse of laundry wastewater and removal of nonylphenol ethoxylates as surfactants”. Journal of Water Process Engineering, 28, 277-292, 2019.
  • [9] Turkay O, Barişçi S, Sillanpää M. “E-peroxone process for the treatment of laundry wastewater: a case study”. Journal of Environmental Chemical Engineering, 5(5), 4282-4290, 2017.
  • [10] Emamjomeh MM, Sivakumar M. “Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes”. Journal of Environmental Management, 90(5), 1663-1679, 2009.
  • [11] Khandegar V, Saroha AK. “Electrocoagulation for the treatment of textile industry effluent-a review”. Journal of Environmental Management, 128, 949-963, 2013.
  • [12] Chen G. “Electrochemical technologies in wastewater treatment”. Separation and Purification Technology, 38(1), 11-41, 2004.
  • [13] Mollah MYA, Schennach R, Parga JR, Cocke DL. “Electrocoagulation (EC)- science and applications”. Journal of Hazardous Materials, 84(1), 29-41, 2001.
  • [14] Ge J, Qu J, Lei P, Liu H. “New bipolar electrocoagulationelectroflotation process for the treatment of laundry wastewater”. Separation and Purification Technology, 36(1), 33-39, 2004.
  • [15] Wang, CT, Chou WL, Kuo YM. “Removal of COD from laundry wastewater by electrocoagulation/electroflotation”. Journal of Hazardous Materials, 164(1), 81-86, 2009.
  • [16] Tripathi SK, Tyagi R, Nandi BK. “Removal of residual surfactants from laundry wastewater: a review”. Journal of Dispersion Science and Technology, 34(11), 1526-1534, 2013.
  • [17] Dimoglo A, Elibol S, Dinç P, Gökmen K, Erdoğan H. “Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse”. Journal of Water Process Engineering, 31, 1-8, 2019.
  • [18] Veli S, Özbay B, Özbay İ, Arslan A, Çebi E. “Elektrokoagülasyon prosesi ile gıda endüstrisi atıksuyunun arıtımında optimum koşulların belirlenmesi”. Süleyman Demirel University Journal of Natural and Applied Sciences, 22(2), 932-936, 2018.
  • [19] Zhu M, Yin X, Liu Q, Feng Z. “Optimization and modelling using the response surface methodology for methylene blue removal by electrocoagulation/hazelnut shell adsorption coupling in a batch system”. Polish Journal of Environmental Studies, 29(3), 2493-2502,2020.
  • [20] Sher F, Iqbal SZ, Rasheed T, Hanif K, Sulejmanović J, Zafar F, Lima EC. “Coupling of electrocoagulation and powder activated carbon for the treatment of sustainable wastewater”. Environmental Science and Pollution Research, 28, 48505-48516, 2021.
  • [21] Eryuruk K, Tezcan Un U, Bakır Ogutveren U. “Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes”. Journal of Cleaner Production, 172, 1089-1095, 2018.
  • [22] Titchou FE, Zazou H, Afanga H, El Gaayda J, Akbour RA, Hamdani M. “Removal of persistent organic pollutants (pops) from water and wastewater by adsorption and electrocoagulation process”. Groundwater for Sustainable Development, 13, 1-23, 2021.
  • [23] Golder AK, Samanta AN, Ray S. “Removal of trivalent chromium by electrocoagulation”. Separation and Purification Technology, 53(1), 33-41, 2007.
  • [24] Tulun Ş, Bilgin M. “Sızıntı sularında çeşitli kirleticilerin elektrokoagülasyon yöntemiyle gideriminin incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(9), 1055-1058, 2017.
  • [25] Barhoumi A, Ncib S, Chibani A, Brahmi K, Bouguerra W, Elaloui E. “High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon.” Industrial Crops and Products, 140, 1-6, 2019.
  • [26] Gören AY, Öncel MS, Kobya M. “Arsenate removal from groundwater by air-injected ec with al ball anodes: effects of operational parameters”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 462-467, 2020.

Application of various aluminum electrode connection methods to laundry wastewater via electrocoagulation

Yıl 2024, Cilt: 30 Sayı: 6, 819 - 827, 29.11.2024

Öz

In this work, various bonding techniques for the aluminum electrode
were used to explore the electrocoagulation method for treating
laundry wastewater. By combining the laundry water in specific ratios
(1:1:1,5 ratio of the wastewater after prewash, main wash, and rinsing),
the wastewater was characterized. Aluminum electrodes were
employed as the anode and cathode, and purification was conducted
using monopolar parallel (MP-P), monopolar series (MP-S), and bipolar
parallel (BP-P) in various connection configurations. For each bonding
form, the impacts of process variables like pH, current density, and time
on COD, MBAS, and turbidity removal were examined. In the
experiments, the maximum removal efficiencies for COD, MBAS, and
turbidity, respectively, were obtained in the form of MP-P binding, at pH
5.5 for 15 minutes and at a current density of 5 mA/cm2
. The
corresponding values were 80%, 97%, and 97%, respectively. The
optimum removal conditions in the system examined with a monopolar
parallel connection were pH 5.5, duration 15 minutes, current density 5
mA/cm2
, temperature 25 ○C and stirring speed 200 rpm. The optimal
removal efficiencies for MBAS, COD, and turbidity were determined to
be 97%, 80%, and 96%, respectively.

Kaynakça

  • [1] Pakula C, Stamminger R. “Electricity and water consumption for laundry washing by washing machine worldwide”. Journal of Energy Efficiency, 3(4), 365-82, 2010.
  • [2] Janpoor F, Torabian A, Khatibikamal V. “Treatment of laundry waste-water by electrocoagulation”. Journal of Chemical Technology & Biotechnology, 86(8), 1113-1120, 2011.
  • [3] Ciabattia I, Cesaro F, Faralli L, Fatarella E, Tognotti F. “Demonstration of a treatment system for purification and reuse of laundry wastewater.” Journal of Desalination, 245(1-3),451-59, 2009.
  • [4] Manouchehri M, Kargari A. “Water recovery from laundry wastewater by the cross flow microfiltration process: a strategy for water recycling in residential buildings.” Journal of Cleaner Production, 168, 227-38, 2017.
  • [5] Ramcharan T, Bissessur A. “Analysis of linear alkylbenzene sulfonate in laundry wastewater by hplc-uv and uv-vis spectrophotometry”. Journal of Surfactants and Detergents, 19(1), 209-218, 2016.
  • [6] Huang AK., Veit MT, Juchen PT, Gonçalves GDC, Palácio SM, Cardoso CDO. “Sequential process of coagulation/flocculation/sedimentation-adsorptionmicrofiltration for laundry effluent treatment”. Journal of Environmental Chemical Engineering, 7(4), 1-7, 2019.
  • [7] Centurion VB, Moura AGL, Delforno TP, Okada DY, Dos Santos VP, Varesche MBA, Oliveira VM. “Anaerobic codigestion of commercial laundry wastewater and domestic sewage in a pilot-scale egsb reactor: the influence of surfactant concentration on microbial diversity”. International Biodeterioration & Biodegradation, 127, 77-86, 2018.
  • [8] Khosravanipour M, Benguit AT, Carabin A, Drogui P, Brien E. ”Development of combined membrane filtration, electrochemical technologies, and adsorption processes for treatment and reuse of laundry wastewater and removal of nonylphenol ethoxylates as surfactants”. Journal of Water Process Engineering, 28, 277-292, 2019.
  • [9] Turkay O, Barişçi S, Sillanpää M. “E-peroxone process for the treatment of laundry wastewater: a case study”. Journal of Environmental Chemical Engineering, 5(5), 4282-4290, 2017.
  • [10] Emamjomeh MM, Sivakumar M. “Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes”. Journal of Environmental Management, 90(5), 1663-1679, 2009.
  • [11] Khandegar V, Saroha AK. “Electrocoagulation for the treatment of textile industry effluent-a review”. Journal of Environmental Management, 128, 949-963, 2013.
  • [12] Chen G. “Electrochemical technologies in wastewater treatment”. Separation and Purification Technology, 38(1), 11-41, 2004.
  • [13] Mollah MYA, Schennach R, Parga JR, Cocke DL. “Electrocoagulation (EC)- science and applications”. Journal of Hazardous Materials, 84(1), 29-41, 2001.
  • [14] Ge J, Qu J, Lei P, Liu H. “New bipolar electrocoagulationelectroflotation process for the treatment of laundry wastewater”. Separation and Purification Technology, 36(1), 33-39, 2004.
  • [15] Wang, CT, Chou WL, Kuo YM. “Removal of COD from laundry wastewater by electrocoagulation/electroflotation”. Journal of Hazardous Materials, 164(1), 81-86, 2009.
  • [16] Tripathi SK, Tyagi R, Nandi BK. “Removal of residual surfactants from laundry wastewater: a review”. Journal of Dispersion Science and Technology, 34(11), 1526-1534, 2013.
  • [17] Dimoglo A, Elibol S, Dinç P, Gökmen K, Erdoğan H. “Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse”. Journal of Water Process Engineering, 31, 1-8, 2019.
  • [18] Veli S, Özbay B, Özbay İ, Arslan A, Çebi E. “Elektrokoagülasyon prosesi ile gıda endüstrisi atıksuyunun arıtımında optimum koşulların belirlenmesi”. Süleyman Demirel University Journal of Natural and Applied Sciences, 22(2), 932-936, 2018.
  • [19] Zhu M, Yin X, Liu Q, Feng Z. “Optimization and modelling using the response surface methodology for methylene blue removal by electrocoagulation/hazelnut shell adsorption coupling in a batch system”. Polish Journal of Environmental Studies, 29(3), 2493-2502,2020.
  • [20] Sher F, Iqbal SZ, Rasheed T, Hanif K, Sulejmanović J, Zafar F, Lima EC. “Coupling of electrocoagulation and powder activated carbon for the treatment of sustainable wastewater”. Environmental Science and Pollution Research, 28, 48505-48516, 2021.
  • [21] Eryuruk K, Tezcan Un U, Bakır Ogutveren U. “Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes”. Journal of Cleaner Production, 172, 1089-1095, 2018.
  • [22] Titchou FE, Zazou H, Afanga H, El Gaayda J, Akbour RA, Hamdani M. “Removal of persistent organic pollutants (pops) from water and wastewater by adsorption and electrocoagulation process”. Groundwater for Sustainable Development, 13, 1-23, 2021.
  • [23] Golder AK, Samanta AN, Ray S. “Removal of trivalent chromium by electrocoagulation”. Separation and Purification Technology, 53(1), 33-41, 2007.
  • [24] Tulun Ş, Bilgin M. “Sızıntı sularında çeşitli kirleticilerin elektrokoagülasyon yöntemiyle gideriminin incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(9), 1055-1058, 2017.
  • [25] Barhoumi A, Ncib S, Chibani A, Brahmi K, Bouguerra W, Elaloui E. “High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon.” Industrial Crops and Products, 140, 1-6, 2019.
  • [26] Gören AY, Öncel MS, Kobya M. “Arsenate removal from groundwater by air-injected ec with al ball anodes: effects of operational parameters”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 462-467, 2020.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Hatice Kurtkulak Bu kişi benim

Sevil Veli

Yayımlanma Tarihi 29 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 6

Kaynak Göster

APA Kurtkulak, H., & Veli, S. (2024). Alüminyum elektrotun farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna uygulanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(6), 819-827.
AMA Kurtkulak H, Veli S. Alüminyum elektrotun farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna uygulanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2024;30(6):819-827.
Chicago Kurtkulak, Hatice, ve Sevil Veli. “Alüminyum Elektrotun Farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna Uygulanması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 6 (Kasım 2024): 819-27.
EndNote Kurtkulak H, Veli S (01 Kasım 2024) Alüminyum elektrotun farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna uygulanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 6 819–827.
IEEE H. Kurtkulak ve S. Veli, “Alüminyum elektrotun farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna uygulanması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, ss. 819–827, 2024.
ISNAD Kurtkulak, Hatice - Veli, Sevil. “Alüminyum Elektrotun Farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna Uygulanması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/6 (Kasım 2024), 819-827.
JAMA Kurtkulak H, Veli S. Alüminyum elektrotun farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna uygulanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:819–827.
MLA Kurtkulak, Hatice ve Sevil Veli. “Alüminyum Elektrotun Farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna Uygulanması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, 2024, ss. 819-27.
Vancouver Kurtkulak H, Veli S. Alüminyum elektrotun farklı bağlanma şekillerinin elektrokoagülasyon yöntemiyle çamaşırhane atıksuyuna uygulanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(6):819-27.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.