Araştırma Makalesi
BibTex RIS Kaynak Göster

Fotoreaktör tasarımının ANSYS fluent akiş simülasyonuyla iyileştirilmesi

Yıl 2024, Cilt: 30 Sayı: 7, 991 - 997, 28.12.2024

Öz

Ansys Fluent, kimya mühendisliğinde boru ve kolonların içindeki hız profillerini, sıcaklık profillerini çizmek ve basınç kayıplarını belirlemek, kullanıcı tanımlı fonksiyonları kullanarak kütle ayırma işlemlerinin 2 ve 3 boyutlu simülasyonlarını yapmak için kullanılabilir. Işık enerjisinin uygulanması yoluyla kimyasal reaksiyonları başlatan ve sürdüren fotoreaktörlerin analizinde de hesaplamalı akışkanlar dinamiği (CFD) yazılımı kullanılabilir. Çeşitli endüstrilerde kullanılan fotoreaktörlerin performansı, destekledikleri kimyasal süreçlerin verimliliğini önemli ölçüde etkileyebilir. Bu çalışmada, önerilen fotoreaktörün tasarımını iyileştirmek için Ansys Fluent akış simülasyonu uygulanmıştır. İlk olarak, üç temek fotoreaktör modeli Ansys Fluent CFD yazılımı ile simüle edilmiştir. Buna göre, yüksek akışkan hızı ve homojen akış elde etmek için, kanatçık ve nozullar eklenerek bu temel modeller geliştirilmiştir. Kanatçık yüksekliği ve aralığının toplam hız ve akış homojenliği üzerindeki etkileri de incelenmiştir. Tüm modeller, seçilen noktalardaki toplam akışkan hızı ve hız verileri arasındaki standart sapma ile analiz edilmiştir. Sonuç olarak, maksimum akışkan hızına ve homojen akış dağılımına sahip optimum fotoreaktör tasarımı geliştirilmiştir.

Kaynakça

  • [1] Morris PD, Narracott A, von Tengg-Kobligk H, Soto DAS, Hsiao S, Lungu A, Gunn JP. “Computational fluid dynamics modelling in cardiovascular medicine”. Heart, 102(1), 18- 28, 2016.
  • [2] Sacks MS, Yoganathan AP. “Heart valve function: a biomechanical perspective”. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1484), 2481-2481, 2007.
  • [3] Erdem M, Gok K, Gokce B, Gok A. “Numerical analysis of temperature, screwing moment and thrust force using finite element method in bone screwing process”. Journal of Mechanics in Medicine and Biology, 17(2), 1-16, 2017.
  • [4] Erdem M, Inal S, Taspinar F, Gulbandilar E, Gok K. “Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis". Optoelectron. Advanced Materials, Rapid Communuction, 8(4), 576-580, 2014.
  • [5] Meakin P, Tartakovsky AM. “Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media”. Reviews of Geophysics, 47(3), 1-47, 2009.
  • [6] Zhao Y, Jiang M, Liu Y, Zheng J. “Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube”. AIChE Journal, 55(12), 3109-3124, 2009.
  • [7] Schmitt P, Windt C, Davidson J, Ringwood JV, Whittaker T. “The efficient application of an impulse source wavemaker to CFD simulations”. Journal of Marine Science and Engineering, 7(3), 1-19, 2019.
  • [8] Córdova LJ, Rojas O, Otero B, Castillo J. “Compact finite difference modeling of 2-D acoustic wave propagation”. Journal of Computational and Applied Mathematics, 295, 83-91, 2016.
  • [9] Wang K, Rallu A, Gerbeau JF, Farhat C. “Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems”. International Journal for Numerical Methods in Fluids, 67(9), 1175-1206, 2011.
  • [10] Erdem M., Fırat M., Varol Y. “Numerically investigation of MHD liquid lithium flow under cooling conditions in a circular channel”. Pamukkale University Journal of Engineering Sciences, 24(1), 30-35, 2018.
  • [11] Gok K. “Investigation of the use of silicone pads to reduce the effects on the human face of classical face masks used to prevent from COVID-19 and other infections.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(5), 1742-1747, 2021.
  • [12] Kovacic Z, Likozar B, Hus M. “Photocatalytic CO2 reduction: A review of Ab initio mechanism, kinetics, and multiscale modeling simulations”. ACS Catalysis, 10(24), 14984-15007, 2020.
  • [13] Chu F, Li S, Chen H, Yang L, Ola O, Maroto-Valer M, Du X, Yang Y. “Modeling photocatalytic conversion of carbondioxide in bubbling twin reactor”. Energy Conversation and Management, 149, 514-552, 2017.
  • [14] Mazierski P, Bajorowicz B, Grabowska E, Zaleska-Medynska A. Photoreactor Design Aspects and Modeling of Light. Editors: Colmenares JC, Xu YJ. Heterogeneous Photocatalysis. 211-248, Springer-Verlag Berlin Heidelberg, Springer, 2016.
  • [15] Visan A, van Ommen JR, Kreutzer MT, Lammertink RGH. “Photocatalytic reactor design: Guidelines for kinetic investigation”. ACS Catalysis, 12(13), 8066-8081, 2022.
  • [16] Wang L, Wang QI, Zhao R, Tao YI, Ying KZ, Mao XZ. “Novel flat-plate photobioreactor with inclined baffles and internal structure optimization to improve light regime performance”. ACS Sustainable Chemical Engineering, 9(4), 1550-1558, 2021.
  • [17] Wójtowicz R, Talaga J, “Identification of turbulent liquid flow in a tubular reactor with different width baffles”. Chemical Engineering Communications, 203(2), 161-173, 2016.
  • [18] Frías-Ferrer A, Tudela I, Louisnard O, Sáez V, Esclapez MD, Díez-García MI, Bonete P, González-García J. “Optimized design of an electrochemical filter-press reactor using CFD methods Author links open overlay panel”. Chemical Engineering Journal, 169(1-3), 270-281, 2011.

Improving photoreactor design with ANSYS fluent flow simulation

Yıl 2024, Cilt: 30 Sayı: 7, 991 - 997, 28.12.2024

Öz

Ansys Fluent can be used in chemical engineering to draw velocity profiles, temperature profiles inside pipes and columns and determine pressure losses, making 2D and 3D simulations of mass separation processes using user defined functions. Computational fluid dynamics (CFD) software can be applied for the analysis of photoreactors, which initiate and sustain chemical reactions through the application of light energy. Photoreactors can be used in a variety of industries and their performance can significantly impact the efficiency of the chemical processes they support. In this study, Ansys Fluent flow simulation was applied in order to improve the design of proposed photoreactor. Firstly, base photoreactor models were simulated via Ansys Fluent CFD software. Accordingly, these base models were further developed in order to obtain high fluid velocity and homogenous flow by adding baffles and nozzles. The effects of baffle height and spacing on the total velocity and flow homogeneity were also investigated. All models were analysed with the total fluid velocity on selected points and standard deviation between the velocity data. Optimal photoreactor design with the highest fluid velocity and homogenous flow distribution was developed.

Kaynakça

  • [1] Morris PD, Narracott A, von Tengg-Kobligk H, Soto DAS, Hsiao S, Lungu A, Gunn JP. “Computational fluid dynamics modelling in cardiovascular medicine”. Heart, 102(1), 18- 28, 2016.
  • [2] Sacks MS, Yoganathan AP. “Heart valve function: a biomechanical perspective”. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1484), 2481-2481, 2007.
  • [3] Erdem M, Gok K, Gokce B, Gok A. “Numerical analysis of temperature, screwing moment and thrust force using finite element method in bone screwing process”. Journal of Mechanics in Medicine and Biology, 17(2), 1-16, 2017.
  • [4] Erdem M, Inal S, Taspinar F, Gulbandilar E, Gok K. “Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis". Optoelectron. Advanced Materials, Rapid Communuction, 8(4), 576-580, 2014.
  • [5] Meakin P, Tartakovsky AM. “Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media”. Reviews of Geophysics, 47(3), 1-47, 2009.
  • [6] Zhao Y, Jiang M, Liu Y, Zheng J. “Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube”. AIChE Journal, 55(12), 3109-3124, 2009.
  • [7] Schmitt P, Windt C, Davidson J, Ringwood JV, Whittaker T. “The efficient application of an impulse source wavemaker to CFD simulations”. Journal of Marine Science and Engineering, 7(3), 1-19, 2019.
  • [8] Córdova LJ, Rojas O, Otero B, Castillo J. “Compact finite difference modeling of 2-D acoustic wave propagation”. Journal of Computational and Applied Mathematics, 295, 83-91, 2016.
  • [9] Wang K, Rallu A, Gerbeau JF, Farhat C. “Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems”. International Journal for Numerical Methods in Fluids, 67(9), 1175-1206, 2011.
  • [10] Erdem M., Fırat M., Varol Y. “Numerically investigation of MHD liquid lithium flow under cooling conditions in a circular channel”. Pamukkale University Journal of Engineering Sciences, 24(1), 30-35, 2018.
  • [11] Gok K. “Investigation of the use of silicone pads to reduce the effects on the human face of classical face masks used to prevent from COVID-19 and other infections.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(5), 1742-1747, 2021.
  • [12] Kovacic Z, Likozar B, Hus M. “Photocatalytic CO2 reduction: A review of Ab initio mechanism, kinetics, and multiscale modeling simulations”. ACS Catalysis, 10(24), 14984-15007, 2020.
  • [13] Chu F, Li S, Chen H, Yang L, Ola O, Maroto-Valer M, Du X, Yang Y. “Modeling photocatalytic conversion of carbondioxide in bubbling twin reactor”. Energy Conversation and Management, 149, 514-552, 2017.
  • [14] Mazierski P, Bajorowicz B, Grabowska E, Zaleska-Medynska A. Photoreactor Design Aspects and Modeling of Light. Editors: Colmenares JC, Xu YJ. Heterogeneous Photocatalysis. 211-248, Springer-Verlag Berlin Heidelberg, Springer, 2016.
  • [15] Visan A, van Ommen JR, Kreutzer MT, Lammertink RGH. “Photocatalytic reactor design: Guidelines for kinetic investigation”. ACS Catalysis, 12(13), 8066-8081, 2022.
  • [16] Wang L, Wang QI, Zhao R, Tao YI, Ying KZ, Mao XZ. “Novel flat-plate photobioreactor with inclined baffles and internal structure optimization to improve light regime performance”. ACS Sustainable Chemical Engineering, 9(4), 1550-1558, 2021.
  • [17] Wójtowicz R, Talaga J, “Identification of turbulent liquid flow in a tubular reactor with different width baffles”. Chemical Engineering Communications, 203(2), 161-173, 2016.
  • [18] Frías-Ferrer A, Tudela I, Louisnard O, Sáez V, Esclapez MD, Díez-García MI, Bonete P, González-García J. “Optimized design of an electrochemical filter-press reactor using CFD methods Author links open overlay panel”. Chemical Engineering Journal, 169(1-3), 270-281, 2011.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Ali Canberk Coşkun

Dilek Duranoğlu

Yayımlanma Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 7

Kaynak Göster

APA Coşkun, A. C., & Duranoğlu, D. (2024). Improving photoreactor design with ANSYS fluent flow simulation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(7), 991-997.
AMA Coşkun AC, Duranoğlu D. Improving photoreactor design with ANSYS fluent flow simulation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2024;30(7):991-997.
Chicago Coşkun, Ali Canberk, ve Dilek Duranoğlu. “Improving Photoreactor Design With ANSYS Fluent Flow Simulation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 7 (Aralık 2024): 991-97.
EndNote Coşkun AC, Duranoğlu D (01 Aralık 2024) Improving photoreactor design with ANSYS fluent flow simulation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 7 991–997.
IEEE A. C. Coşkun ve D. Duranoğlu, “Improving photoreactor design with ANSYS fluent flow simulation”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, ss. 991–997, 2024.
ISNAD Coşkun, Ali Canberk - Duranoğlu, Dilek. “Improving Photoreactor Design With ANSYS Fluent Flow Simulation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/7 (Aralık 2024), 991-997.
JAMA Coşkun AC, Duranoğlu D. Improving photoreactor design with ANSYS fluent flow simulation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:991–997.
MLA Coşkun, Ali Canberk ve Dilek Duranoğlu. “Improving Photoreactor Design With ANSYS Fluent Flow Simulation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, 2024, ss. 991-7.
Vancouver Coşkun AC, Duranoğlu D. Improving photoreactor design with ANSYS fluent flow simulation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(7):991-7.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.