Referans yol girişi için hidrolik simülatörün doğrusal olmayan geriadımlamalı kontrolü
Yıl 2025,
Cilt: 31 Sayı: 1, 1 - 8, 27.02.2025
Muzaffer Metin
,
Fırat Can Yılmaz
,
Göktürk Taşağıl
,
Timuçin Bayram
,
Ferhat Yiğit
Öz
Bu çalışmada, kontrol teorisi perspektifinden, yol simülatör sistemi için referans takip problemi araştırılmıştır. Önerilen kontrol sinyali doğrusal olmayan bir geri adımlı kontrol algoritması üzerinden elde edilmiştir. Bu tasarım, hidrolik piston içeren bir taşıt sisteminden oluşan test sisteminde yol deplasman sinyalini yansıtmak için kullanılır. Önerilen kontrolcünün performansı zaman ve frekans alanlarında değerlendirilip, kontrol tasarımının temel gayesi hidrolik piston tarafından oluşturulan test yolu düzensizliklerinin yer değiştirmesinin araca doğru bir şekilde yansıtılmasıdır. Ayrıca, araca aktarılan sinyallerin frekans yoğunluklarının da gerçek yol sinyalleriyle eşleşmesi beklenmektedir. Kara taşıtları için gerçek yol verileri kontrol algoritmasındaki referans giriş sinyali olarak kullanılmıştır. Bir laboratuvar ortamında elde edilen sonuçlar üzerinden kontrol sinyalinin etkinliği gösterilmiştir.
Kaynakça
- [1] Raath AD, Van Waveren CC. “A time domain approach to load reconstruction for durability testing”. Engineering Failure Analysis, 5(2), 113-119, 1998.
- [2] Zhidong Y, Yanyan Z, Dacheng C, Yunjia Y. “Iterative approach of tire-coupled road simulator based on singularity threshold criterion”. IEEE 2015 International Conference on Fluid Power and Mechatronics, Harbin, China, 5-7 August 2015.
- [3] Chindamo D, Gadola M, Marchesin FP. “Reproduction of real-world road profiles on a four-poster rig for indoor vehicle chassis and suspension durability testing”. Advances in Mechanical Engineering, 9(8), 1-10, 2017.
- [4] Dursun U, Cansever G, Üstoğlu İ. “Neuro-fuzzy iterative learning control for 4-poster test rig”. Transactions of the Institute of Measurement and Control, 42(12), 2262-2275, 2020.
- [5] Wan KJ, Ji XD, Yi ZJ, Bae KY. “Control system development of the one-axis hydraulic road simulator using QFT”. IEEE 2007 Chinese Control Conference, Zhangjiajie, China, 26-31 July 2007.
- [6] Anthonis J, Kennes P, Ramon H. “Design and evaluation of a low-power mobile shaker for vibration tests on heavy wheeled vehicles”. Journal of Terramechanics, 37(4), 191-205, 2000.
- [7] Gizatullin AO, Edge KA. “Adaptive control for a multi-axis hydraulic test rig”. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 221(2), 183-198, 2007.
- [8] Shen W, Wang JZ, Wang SK. "The control of the electro-hydraulic shaking table based on dynamic surface adaptive robust control”. Transactions of the Institute of Measurement and Control, 39(8), 1271-1280, 2017.
- [9] Shen G, Lv GM, Ye ZM, Cong DC, Han JW. “Feed-forward inverse control for transient waveform replication on electro-hydraulic shaking table”. Journal of Vibration and Control, 18(10), 1474-1493, 2012.
- [10] Ayas MS, Sahin E, Altas IH. “High order differential feedback controller design and implementation for a Stewart platform”. Journal of Vibration and Control, 26(11-12), 976-988, 2020.
- [11] Yao J, Xiao R, Chen S, Di D, Gao S, Yu H. “Acceleration harmonic identification algorithm based on the unscented Kalman filter for shaking signals of an electro-hydraulic servo shaking table”. Journal of Vibration and Control, 21(16), 3205-3217, 2015.
- [12] Guan GF, Plummer AR. “Acceleration decoupling control of 6 degrees of freedom electro-hydraulic shaking table”. Journal of Vibration and Control, 25(21-22), 2758-2768, 2019.
- [13] Nedic N, Stojanovic V, Djordjevic V. “Optimal control of hydraulically driven parallel robot platform based on firefly algorithm”. Nonlinear Dynamics, 82(3), 1457-1473, 2015.
- [14] Dursun U, Üstoğlu İ, Taşçikaraoğlu FY. “Hidrolik test sisteminin model öngörülü kontrolü”. Pamukkale University Journal of Engineering Sciences, 24(8), 1443-1449, 2018.
- [15] Liu GP, Daley S. “Optimal-tuning nonlinear PID control of hydraulic systems”. Control Engineering Practice, 8(9), 1045-1053, 2000.
- [16] Liu GP, Daley S, Duan GR. “Application of optimal-tuning PID control to industrial hydraulic systems”. IFAC Proceedings Volumes, 35(1), 179-184, 2002.
- [17] Onat C, Daşkin M. "Aktif süspansiyon sistemleri için bir elektro-hidrolik eyleyicinin kazanç programlamalı PI kontrolü". Dicle University Journal of Engineering, 9(1), 195-203, 2018.
- [18] Çetin Ş, Akkaya AV. “Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system”. Nonlinear Dynamics, 61(3), 465-476, 2010.
- [19] Phan VD, Vo CP, Dao HV, Ahn KK. “Actuator fault-tolerant control for an electro-hydraulic actuator using time delay estimation and feedback linearization”. IEEE Access, 9, 107111-107123, 2021.
- [20] Vo CP, Dao HV, Ahn KK. “Robust fault-tolerant control of an electro-hydraulic actuator with a novel nonlinear unknown input observer”. IEEE Access, 9, 30750-30760, 2021.
- [21] Dao HV, Tran DT, Ahn KK. “Active fault tolerant control system design for hydraulic manipulator with internal leakage faults based on disturbance observer and online adaptive identification”. IEEE Access, 9, 23850-23862, 2021.
- [22] Feng H, Yin C, Cao D. “Trajectory Tracking of an Electro-Hydraulic Servo System With an New Friction Model-Based Compensation”. IEEE/ASME Transactions on Mechatronics, 28(1), 473-482, 2022.
- [23] Yao Z, Liang X, Jiang GP, Yao J. “Model-Based Reinforcement Learning Control of Electrohydraulic Position Servo Systems”. IEEE/ASME Transactions on Mechatronics, 28(3),1446-1455, 2022.
- [24] Yang G, Yao J. “Nonlinear adaptive output feedback robust control of hydraulic actuators with largely unknown modeling uncertainties”. Applied Mathematical Modelling, 79, 824-842, 2020.
- [25] Zheng J, Yao J. “Robust adaptive tracking control of hydraulic actuators with unmodeled dynamics”. Transactions of the Institute of Measurement and Control, 41(14), 3887-3898, 2019.
- [26] Zaare S, Soltanpour MR. “Optimal robust adaptive fuzzy backstepping control of electro-hydraulic servo position system”. Transactions of the Institute of Measurement and Control, 44(6), 1247-1262, 2022.
- [27] Yao J, Wang X, Hu S, Fu W. “Adaline neural network-based adaptive inverse control for an electro-hydraulic servo system”. Journal of Vibration and Control, 17(13), 2007-2014, 2011.
- [28] Ahn KK, Nam DNC, Jin M. “Adaptive backstepping control of an electrohydraulic actuator”. IEEE/ASME Transactions on Mechatronics, 19(3), 987-995, 2013.
- [29] Yang G, Yao J. “Output feedback control of electro-hydraulic servo actuators with matched and mismatched disturbances rejection”. Journal of the Franklin Institute, 356(16), 9152-9179, 2019.
- [30] Kim W, Won D, Shin D, Chung CC. “Output feedback nonlinear control for electro-hydraulic systems”. Mechatronics, 22(6), 766-777, 2012.
- [31] Deng W, Yao J, Wang Y, Yang X, Chen J. “Output feedback backstepping control of hydraulic actuators with valve dynamics compensation”. Mechanical Systems and Signal Processing, 158, 107769, 2021.
- [32] Ba DX, Dinh TQ, Bae J, Ahn KK. “An effective disturbance-observer-based nonlinear controller for a pump-controlled hydraulic system”. IEEE/ASME Transactions on Mechatronics, 25(1), 32-43, 2019.
- [33] Li S, Guo Q, Yan Y, Shi Y. “Terminal sliding mode observer based–asymptotic tracking control of electro-hydraulic systems with lumped uncertainties”. Transactions of the Institute of Measurement and Control, 45(1), 17-26, 2023.
- [34] Kilic E, Dolen M, Koku AB, Caliskan H, Balkan T. “Accurate pressure prediction of a servo-valve controlled hydraulic system”. Mechatronics, 22(7), 997-1014, 2012.
- [35] Taşağıl G, Başgöl B, Metin M, Bayram T. “Elastomer Karakterizasyon Test Sistemlerinin Modellenmesi ve Parametrik Analizleri”. European Journal of Science and Technology, 20, 881-889, 2020.
- [36] Zhu X, Jones JW, Allison JE. “Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: Stress-controlled fatigue life response”. Metallurgical and Materials Transactions A, 39(11), 2681-2688, 2008.
Nonlinear backstepping control of a hydraulic simulator for reference road input
Yıl 2025,
Cilt: 31 Sayı: 1, 1 - 8, 27.02.2025
Muzaffer Metin
,
Fırat Can Yılmaz
,
Göktürk Taşağıl
,
Timuçin Bayram
,
Ferhat Yiğit
Öz
In this paper, the problem of reference tracking was investigated for a road simulator system from the perspective of control theory. The suggested control signal is obtained from a nonlinear backstepping control algorithm. This design is used to mirror the road displacement signal in the test system containing a vehicle system that incorporates a hydraulic piston. The performance of the proposed controller is evaluated in the time and frequency domains, with the primary criterion being that the displacement of the test road irregularities created by the hydraulic piston is accurately reflected to the vehicle. Additionally, the frequency densities of the signals transmitted to the vehicle are expected to match the real road data. Real road signals for land vehicles are used as the reference input signals. We demonstrate the effectiveness of the control signal through the results obtained in a laboratory environment.
Kaynakça
- [1] Raath AD, Van Waveren CC. “A time domain approach to load reconstruction for durability testing”. Engineering Failure Analysis, 5(2), 113-119, 1998.
- [2] Zhidong Y, Yanyan Z, Dacheng C, Yunjia Y. “Iterative approach of tire-coupled road simulator based on singularity threshold criterion”. IEEE 2015 International Conference on Fluid Power and Mechatronics, Harbin, China, 5-7 August 2015.
- [3] Chindamo D, Gadola M, Marchesin FP. “Reproduction of real-world road profiles on a four-poster rig for indoor vehicle chassis and suspension durability testing”. Advances in Mechanical Engineering, 9(8), 1-10, 2017.
- [4] Dursun U, Cansever G, Üstoğlu İ. “Neuro-fuzzy iterative learning control for 4-poster test rig”. Transactions of the Institute of Measurement and Control, 42(12), 2262-2275, 2020.
- [5] Wan KJ, Ji XD, Yi ZJ, Bae KY. “Control system development of the one-axis hydraulic road simulator using QFT”. IEEE 2007 Chinese Control Conference, Zhangjiajie, China, 26-31 July 2007.
- [6] Anthonis J, Kennes P, Ramon H. “Design and evaluation of a low-power mobile shaker for vibration tests on heavy wheeled vehicles”. Journal of Terramechanics, 37(4), 191-205, 2000.
- [7] Gizatullin AO, Edge KA. “Adaptive control for a multi-axis hydraulic test rig”. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 221(2), 183-198, 2007.
- [8] Shen W, Wang JZ, Wang SK. "The control of the electro-hydraulic shaking table based on dynamic surface adaptive robust control”. Transactions of the Institute of Measurement and Control, 39(8), 1271-1280, 2017.
- [9] Shen G, Lv GM, Ye ZM, Cong DC, Han JW. “Feed-forward inverse control for transient waveform replication on electro-hydraulic shaking table”. Journal of Vibration and Control, 18(10), 1474-1493, 2012.
- [10] Ayas MS, Sahin E, Altas IH. “High order differential feedback controller design and implementation for a Stewart platform”. Journal of Vibration and Control, 26(11-12), 976-988, 2020.
- [11] Yao J, Xiao R, Chen S, Di D, Gao S, Yu H. “Acceleration harmonic identification algorithm based on the unscented Kalman filter for shaking signals of an electro-hydraulic servo shaking table”. Journal of Vibration and Control, 21(16), 3205-3217, 2015.
- [12] Guan GF, Plummer AR. “Acceleration decoupling control of 6 degrees of freedom electro-hydraulic shaking table”. Journal of Vibration and Control, 25(21-22), 2758-2768, 2019.
- [13] Nedic N, Stojanovic V, Djordjevic V. “Optimal control of hydraulically driven parallel robot platform based on firefly algorithm”. Nonlinear Dynamics, 82(3), 1457-1473, 2015.
- [14] Dursun U, Üstoğlu İ, Taşçikaraoğlu FY. “Hidrolik test sisteminin model öngörülü kontrolü”. Pamukkale University Journal of Engineering Sciences, 24(8), 1443-1449, 2018.
- [15] Liu GP, Daley S. “Optimal-tuning nonlinear PID control of hydraulic systems”. Control Engineering Practice, 8(9), 1045-1053, 2000.
- [16] Liu GP, Daley S, Duan GR. “Application of optimal-tuning PID control to industrial hydraulic systems”. IFAC Proceedings Volumes, 35(1), 179-184, 2002.
- [17] Onat C, Daşkin M. "Aktif süspansiyon sistemleri için bir elektro-hidrolik eyleyicinin kazanç programlamalı PI kontrolü". Dicle University Journal of Engineering, 9(1), 195-203, 2018.
- [18] Çetin Ş, Akkaya AV. “Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system”. Nonlinear Dynamics, 61(3), 465-476, 2010.
- [19] Phan VD, Vo CP, Dao HV, Ahn KK. “Actuator fault-tolerant control for an electro-hydraulic actuator using time delay estimation and feedback linearization”. IEEE Access, 9, 107111-107123, 2021.
- [20] Vo CP, Dao HV, Ahn KK. “Robust fault-tolerant control of an electro-hydraulic actuator with a novel nonlinear unknown input observer”. IEEE Access, 9, 30750-30760, 2021.
- [21] Dao HV, Tran DT, Ahn KK. “Active fault tolerant control system design for hydraulic manipulator with internal leakage faults based on disturbance observer and online adaptive identification”. IEEE Access, 9, 23850-23862, 2021.
- [22] Feng H, Yin C, Cao D. “Trajectory Tracking of an Electro-Hydraulic Servo System With an New Friction Model-Based Compensation”. IEEE/ASME Transactions on Mechatronics, 28(1), 473-482, 2022.
- [23] Yao Z, Liang X, Jiang GP, Yao J. “Model-Based Reinforcement Learning Control of Electrohydraulic Position Servo Systems”. IEEE/ASME Transactions on Mechatronics, 28(3),1446-1455, 2022.
- [24] Yang G, Yao J. “Nonlinear adaptive output feedback robust control of hydraulic actuators with largely unknown modeling uncertainties”. Applied Mathematical Modelling, 79, 824-842, 2020.
- [25] Zheng J, Yao J. “Robust adaptive tracking control of hydraulic actuators with unmodeled dynamics”. Transactions of the Institute of Measurement and Control, 41(14), 3887-3898, 2019.
- [26] Zaare S, Soltanpour MR. “Optimal robust adaptive fuzzy backstepping control of electro-hydraulic servo position system”. Transactions of the Institute of Measurement and Control, 44(6), 1247-1262, 2022.
- [27] Yao J, Wang X, Hu S, Fu W. “Adaline neural network-based adaptive inverse control for an electro-hydraulic servo system”. Journal of Vibration and Control, 17(13), 2007-2014, 2011.
- [28] Ahn KK, Nam DNC, Jin M. “Adaptive backstepping control of an electrohydraulic actuator”. IEEE/ASME Transactions on Mechatronics, 19(3), 987-995, 2013.
- [29] Yang G, Yao J. “Output feedback control of electro-hydraulic servo actuators with matched and mismatched disturbances rejection”. Journal of the Franklin Institute, 356(16), 9152-9179, 2019.
- [30] Kim W, Won D, Shin D, Chung CC. “Output feedback nonlinear control for electro-hydraulic systems”. Mechatronics, 22(6), 766-777, 2012.
- [31] Deng W, Yao J, Wang Y, Yang X, Chen J. “Output feedback backstepping control of hydraulic actuators with valve dynamics compensation”. Mechanical Systems and Signal Processing, 158, 107769, 2021.
- [32] Ba DX, Dinh TQ, Bae J, Ahn KK. “An effective disturbance-observer-based nonlinear controller for a pump-controlled hydraulic system”. IEEE/ASME Transactions on Mechatronics, 25(1), 32-43, 2019.
- [33] Li S, Guo Q, Yan Y, Shi Y. “Terminal sliding mode observer based–asymptotic tracking control of electro-hydraulic systems with lumped uncertainties”. Transactions of the Institute of Measurement and Control, 45(1), 17-26, 2023.
- [34] Kilic E, Dolen M, Koku AB, Caliskan H, Balkan T. “Accurate pressure prediction of a servo-valve controlled hydraulic system”. Mechatronics, 22(7), 997-1014, 2012.
- [35] Taşağıl G, Başgöl B, Metin M, Bayram T. “Elastomer Karakterizasyon Test Sistemlerinin Modellenmesi ve Parametrik Analizleri”. European Journal of Science and Technology, 20, 881-889, 2020.
- [36] Zhu X, Jones JW, Allison JE. “Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: Stress-controlled fatigue life response”. Metallurgical and Materials Transactions A, 39(11), 2681-2688, 2008.