Araştırma Makalesi
BibTex RIS Kaynak Göster

Kar erimesi hacminin hidrograf ayrımı yöntemi ile tahmini

Yıl 2025, Cilt: 31 Sayı: 1, 141 - 146, 27.02.2025

Öz

Kar erimesinin baskın olduğu havzalarda verimli su temini yönetimi için yağmur ve kar erime sürelerinin senkronizasyonunu sağlayan tahmin araçlarının geliştirilmesi istenmektedir. Bu çalışma, Yukarı Karasu Havzası’ndaki (Erzurum) kar erimesi simülasyon çalışmalarında kullanılmak üzere akarsu hidrografını taban akışı, yağmur suyu ve kar erimesi gibi bileşenlerine ayırmayı amaçlamaktadır. Bölge, yılda yaklaşık 150 gün kar örtüsünün hâkim olduğu 242 km2'lik bir alanı kaplamaktadır. Toplam akışın yüzey suyu akış bileşeni, yüzey suyu ve yeraltı suyu uç elemanlarının klorür içerikleri kullanılarak belirlenmiştir. Yüzey suyundaki yağmur ve eriyen kar suyu bileşenlerinin hacimleri, yağmurun, birikmiş karın ve yüzey suyunun oksijen-18 içeriklerinden belirlenmiştir. Hidrograf ayırma hesaplamaları, 6 Mart 2008 ile 15 Haziran 2008 tarihleri arasındaki kar erimesi döneminde toplam akışın uç bileşenlerinin izleyici içerikleri kullanılarak günlük bazda yapılmıştır. Sonuçlar, nehirdeki toplam akışın %9’unun yeraltı suyu, %73’ünün eriyen kar suyu ve %18’inin yağmur suyundan oluştuğunu göstermektedir. Akarsuyun oksijen-18 izotop içeriği akarsu akışı sırasında eriyen kar suyu ve yağmur suyu bileşenlerinin etkili bir şekilde karıştığını göstermektedir. Bu çalışma aynı zamanda izotop takasının kar erimesi suyunun izotop içeriğini belirleyen önemli süreç olduğuna işaret etmektedir.

Kaynakça

  • [1] Kaya I. Application of Snowmelt Runoff Model Using Remote Sensing and Geographic Information Systems. MSc Thesis, Middle East Technical University, Ankara, Turkey, 1999.
  • [2] Tekeli AE, Akyürek Z, Sensoy A, Sorman AA, Sorman AÜ. “Modelling the temporal variation in snow-covered area derived from satellite images for simulating/forecasting of snowmelt runoff in Turkey”. Hydrological Sciences Journal, 50(4), 669-682, 2005.
  • [3] Tekeli AE. Integration of Remote Sensing and Geographic Information Systems on Snow Hydrology Modeling. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2000.
  • [4] Tekeli AE, Akyürek Z, Şorman AA, Şensoy A, Şorman AÜ. “Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey”. Remote Sensing of Environment, 97(2), 216-230, 2005.
  • [5] Şensoy A, Şorman AA, Tekeli AE, Şorman AÜ, Garen DC. “Point‐scale energy and mass balance snowpack simulations in the upper Karasu basin, Turkey”. Hydrological Processes, 20(4), 899-922, 2006.
  • [6] Şorman AA, Sensoy A, Tekeli AE, Sorman AU, Akyurek Z. “Modeling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey”. Hydrological Processes, 23, 1031-1040, 2009.
  • [7] Şensoy A, Uysal G. “The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and numerical weather prediction data”. Water Resources Management, 26, 3415-3440, 2012.
  • [8] Jeelani G, Kumar US, Kumar B. “Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow”. Journal of Hydrology, 481, 157-165, 2013.
  • [9] Solder JE, Beisner KR. “Critical evaluation of stable isotope mixing end-members for estimating groundwater recharge sources: case study from the South Rim of the Grand Canyon, Arizona, USA”. Hydrogeology Journal, 28(5), 1575-1591, 2020.
  • [10] Davisson ML, Smith DK, Kenneally J, Rose TP. “Isotope hydrology of southern Nevada groundwater: stable isotopes and radiocarbon”. Water Resources Research, 35(1), 279-294, 1999.
  • [11] Gökgöz A, Tabancalı Y. “Hydrogeological and hydrochemical properties of Böceli and Kazanpınar karst springs (Denizli)”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 420-430, 2021.
  • [12] Ribolzi O, Andrieux P, Valles V, Bouzigues R, Bariac T, Voltz M. “Contribution of groundwater and overland flows to storm flow generation in a cultivated Mediterranean catchment. Quantification by natural chemical tracing”. Journal of Hydrology, 233(1-4), 241-257, 2000.
  • [13] Soulsby C, Rodgers PJ, Petry J, Hannah DM, Malcolm IA, Dunn SM. “Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland”. Journal of Hydrology, 291(3-4), 174-196, 2004.
  • [14] Tardy Y, Bustillo V, Boeglin JL. “Geochemistry applied to the watershed survey: hydrograph separation, erosion and soil dynamics. A case study: the basin of the Niger River, Africa”. Applied Geochemistry, 19(4), 469-518, 2004.
  • [15] Wels C, Cornett RJ, Lazerte BD. “Hydrograph separation: A comparison of geochemical and isotopic tracers”. Journal of Hydrology, 122(1-4), 253-274, 1991.
  • [16] Mul ML, Mutiibwa RK, Uhlenbrook S, Savenije HH. “Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania”. Physics and Chemistry of the Earth, Parts A/B/C, 33(1-2), 151-156, 2008.
  • [17] Sklash MG, Farvolden RN. “The role of groundwater in storm runoff”. Journal of Hydrology, 3(1-4), 45-65, 1979.
  • [18] Buttle JM. “Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins”. Progress in Physical Geography, 18(1), 16-41, 1994.
  • [19] Ladouche B, Probst A, Viville D, Idir S, Baqué D, Loubet M, Probst JL, Bariac T. “Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France)”. Journal of Hydrology, 242(3-4), 255-274, 2001.
  • [20] Marc V, Didon-Lescot JF, Michael C. “Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge”. Journal of Hydrology, 247(3-4), 215-229, 2001.
  • [21] Taylor S, Feng X, Kirchner JW, Osterhuber R, Klaue B, Renshaw CE. “Isotopic evolution of a seasonal snowpack and its melt”. Water Resources Research, 37(3), 759-769, 2001.
  • [22] Allan CJ, Roulet NT. “Runoff generation in zero‐order precambrian shield catchments: The stormflow response of a heterogeneous landscape”. Hydrological Processes, 8(4), 369-388, 1994.
  • [23] Buttle JM, Vonk AM, Taylor CH. “Applicability of isotopic hydrograph separation in a suburban basin during snowmelt”. Hydrological Processes, 9(2), 197-211, 1995.
  • [24] Maclean RA, English MC, Schiff SL. “Hydrological and hydrochemical response of a small canadian shield catchment to late winter rain‐on‐snow events”. Hydrological Processes, 9(8), 845-863, 1995.
  • [25] Rodhe A. “Groundwater contribution to streamflow in Swedish forested till soil as estimated by oxygen-18”. Isotope Hydrology 1983, IAEA Symposium, Vienna, Austria, 12-16 September 1983.
  • [26] Sklash MG. Environmental Isotope Studies of Storm and Snowmelt Runoff Generation. Editors: Anderson MG, Burt TP. Process Studies in Hillslope Hydrology, 401-435, Chichester, UK., John Wiley and Sons, 1990.
  • [27] Hooper RP, Shoemaker CA. “A comparison of chemical and isotopic hydrograph separation”. Water Resources Research, 22(10), 1444-1454, 1986.
  • [28] Herrmann A, Lehrer M, Stichler W. “Isotope input into runoff systems from melting snow covers”. Hydrology Research, 12(4-5), 309-318, 1981.

Estimating the snowmelt runoff volume through hydrograph separation

Yıl 2025, Cilt: 31 Sayı: 1, 141 - 146, 27.02.2025

Öz

The development of predictive tools that enable synchronization of rain and snowmelt times is desired for efficient water supply management in the snowmelt-dominant basins. This study aims to separate the streamflow hydrograph into its components, such as base flow, rainwater, and snowmelt, to be used for the snowmelt simulation studies of the Upper Karasu Basin, Erzurum, Turkey. The region covers an area of 242 km2, where snow cover prevails for about 150 days in a year. The surface water flow component of the total runoff has been determined by using the chloride contents of surface water and groundwater end-members. The volumes of the rain and snowmelt water components in the surface water have been identified from the oxygen-18 contents of the rain, accumulated snow, and surface water. The hydrograph separation calculations have been performed daily by using the end-member contents of the total runoff during the snowmelt period between March 6, 2008, and June 15, 2008. The results show that the total runoff in the river during this period was composed of 9% groundwater, 73% snowmelt water, and 18% rain. The stream water's oxygen-18 isotope content indicates an effective mixing of snowmelt water and rainwater components during the surface flow process. This study also suggests that isotopic exchange is an important process that determines the snowmelt water's isotope content.

Kaynakça

  • [1] Kaya I. Application of Snowmelt Runoff Model Using Remote Sensing and Geographic Information Systems. MSc Thesis, Middle East Technical University, Ankara, Turkey, 1999.
  • [2] Tekeli AE, Akyürek Z, Sensoy A, Sorman AA, Sorman AÜ. “Modelling the temporal variation in snow-covered area derived from satellite images for simulating/forecasting of snowmelt runoff in Turkey”. Hydrological Sciences Journal, 50(4), 669-682, 2005.
  • [3] Tekeli AE. Integration of Remote Sensing and Geographic Information Systems on Snow Hydrology Modeling. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2000.
  • [4] Tekeli AE, Akyürek Z, Şorman AA, Şensoy A, Şorman AÜ. “Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey”. Remote Sensing of Environment, 97(2), 216-230, 2005.
  • [5] Şensoy A, Şorman AA, Tekeli AE, Şorman AÜ, Garen DC. “Point‐scale energy and mass balance snowpack simulations in the upper Karasu basin, Turkey”. Hydrological Processes, 20(4), 899-922, 2006.
  • [6] Şorman AA, Sensoy A, Tekeli AE, Sorman AU, Akyurek Z. “Modeling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey”. Hydrological Processes, 23, 1031-1040, 2009.
  • [7] Şensoy A, Uysal G. “The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and numerical weather prediction data”. Water Resources Management, 26, 3415-3440, 2012.
  • [8] Jeelani G, Kumar US, Kumar B. “Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow”. Journal of Hydrology, 481, 157-165, 2013.
  • [9] Solder JE, Beisner KR. “Critical evaluation of stable isotope mixing end-members for estimating groundwater recharge sources: case study from the South Rim of the Grand Canyon, Arizona, USA”. Hydrogeology Journal, 28(5), 1575-1591, 2020.
  • [10] Davisson ML, Smith DK, Kenneally J, Rose TP. “Isotope hydrology of southern Nevada groundwater: stable isotopes and radiocarbon”. Water Resources Research, 35(1), 279-294, 1999.
  • [11] Gökgöz A, Tabancalı Y. “Hydrogeological and hydrochemical properties of Böceli and Kazanpınar karst springs (Denizli)”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 420-430, 2021.
  • [12] Ribolzi O, Andrieux P, Valles V, Bouzigues R, Bariac T, Voltz M. “Contribution of groundwater and overland flows to storm flow generation in a cultivated Mediterranean catchment. Quantification by natural chemical tracing”. Journal of Hydrology, 233(1-4), 241-257, 2000.
  • [13] Soulsby C, Rodgers PJ, Petry J, Hannah DM, Malcolm IA, Dunn SM. “Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland”. Journal of Hydrology, 291(3-4), 174-196, 2004.
  • [14] Tardy Y, Bustillo V, Boeglin JL. “Geochemistry applied to the watershed survey: hydrograph separation, erosion and soil dynamics. A case study: the basin of the Niger River, Africa”. Applied Geochemistry, 19(4), 469-518, 2004.
  • [15] Wels C, Cornett RJ, Lazerte BD. “Hydrograph separation: A comparison of geochemical and isotopic tracers”. Journal of Hydrology, 122(1-4), 253-274, 1991.
  • [16] Mul ML, Mutiibwa RK, Uhlenbrook S, Savenije HH. “Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania”. Physics and Chemistry of the Earth, Parts A/B/C, 33(1-2), 151-156, 2008.
  • [17] Sklash MG, Farvolden RN. “The role of groundwater in storm runoff”. Journal of Hydrology, 3(1-4), 45-65, 1979.
  • [18] Buttle JM. “Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins”. Progress in Physical Geography, 18(1), 16-41, 1994.
  • [19] Ladouche B, Probst A, Viville D, Idir S, Baqué D, Loubet M, Probst JL, Bariac T. “Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France)”. Journal of Hydrology, 242(3-4), 255-274, 2001.
  • [20] Marc V, Didon-Lescot JF, Michael C. “Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge”. Journal of Hydrology, 247(3-4), 215-229, 2001.
  • [21] Taylor S, Feng X, Kirchner JW, Osterhuber R, Klaue B, Renshaw CE. “Isotopic evolution of a seasonal snowpack and its melt”. Water Resources Research, 37(3), 759-769, 2001.
  • [22] Allan CJ, Roulet NT. “Runoff generation in zero‐order precambrian shield catchments: The stormflow response of a heterogeneous landscape”. Hydrological Processes, 8(4), 369-388, 1994.
  • [23] Buttle JM, Vonk AM, Taylor CH. “Applicability of isotopic hydrograph separation in a suburban basin during snowmelt”. Hydrological Processes, 9(2), 197-211, 1995.
  • [24] Maclean RA, English MC, Schiff SL. “Hydrological and hydrochemical response of a small canadian shield catchment to late winter rain‐on‐snow events”. Hydrological Processes, 9(8), 845-863, 1995.
  • [25] Rodhe A. “Groundwater contribution to streamflow in Swedish forested till soil as estimated by oxygen-18”. Isotope Hydrology 1983, IAEA Symposium, Vienna, Austria, 12-16 September 1983.
  • [26] Sklash MG. Environmental Isotope Studies of Storm and Snowmelt Runoff Generation. Editors: Anderson MG, Burt TP. Process Studies in Hillslope Hydrology, 401-435, Chichester, UK., John Wiley and Sons, 1990.
  • [27] Hooper RP, Shoemaker CA. “A comparison of chemical and isotopic hydrograph separation”. Water Resources Research, 22(10), 1444-1454, 1986.
  • [28] Herrmann A, Lehrer M, Stichler W. “Isotope input into runoff systems from melting snow covers”. Hydrology Research, 12(4-5), 309-318, 1981.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrojeoloji
Bölüm Makale
Yazarlar

Emrah Pekkan

Celal Serdar Bayari Bu kişi benim

Alparslan Arikan Bu kişi benim

Yayımlanma Tarihi 27 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 1

Kaynak Göster

APA Pekkan, E., Bayari, C. S., & Arikan, A. (2025). Estimating the snowmelt runoff volume through hydrograph separation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 141-146.
AMA Pekkan E, Bayari CS, Arikan A. Estimating the snowmelt runoff volume through hydrograph separation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2025;31(1):141-146.
Chicago Pekkan, Emrah, Celal Serdar Bayari, ve Alparslan Arikan. “Estimating the Snowmelt Runoff Volume through Hydrograph Separation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 1 (Şubat 2025): 141-46.
EndNote Pekkan E, Bayari CS, Arikan A (01 Şubat 2025) Estimating the snowmelt runoff volume through hydrograph separation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 1 141–146.
IEEE E. Pekkan, C. S. Bayari, ve A. Arikan, “Estimating the snowmelt runoff volume through hydrograph separation”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 1, ss. 141–146, 2025.
ISNAD Pekkan, Emrah vd. “Estimating the Snowmelt Runoff Volume through Hydrograph Separation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/1 (Şubat 2025), 141-146.
JAMA Pekkan E, Bayari CS, Arikan A. Estimating the snowmelt runoff volume through hydrograph separation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:141–146.
MLA Pekkan, Emrah vd. “Estimating the Snowmelt Runoff Volume through Hydrograph Separation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 1, 2025, ss. 141-6.
Vancouver Pekkan E, Bayari CS, Arikan A. Estimating the snowmelt runoff volume through hydrograph separation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(1):141-6.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.