Review
BibTex RIS Cite

Comprehensive review of the effect of flap technologies in H-Darrieus vertical axis wind turbines

Year 2025, Volume: 31 Issue: 4, 522 - 535, 25.08.2025

Abstract

This study presents a comprehensive analysis of the application and impact of flap technologies on the performance of Vertical Axis Wind Turbines (VAWTs). As a type of flow control device, flap technologies are proven to enhance aerodynamic performance by delaying flow separation, increasing lift, and reducing drag. Numerous experimental studies and numerical simulations demonstrate how flap technologies significantly improve the efficiency of VAWTs, especially at low wind speeds. Additionally, the role of flap technologies in extending the operational wind speed range and enhancing the self-starting capabilities of VAWTs is highlighted. This enhancement is crucial as it contributes to the viability of VAWTs in urban and suburban settings where wind conditions are highly variable. This study delves into the optimal positioning and arrangement of flap technologies on turbine blades to maximize performance enhancement. Thus, the paper offers a thorough exploration of VGs (Vortex Generators) as a key aerodynamic modification for boosting the performance of VAWTs and encourages continued research and optimization in this area. Further development and refinement of flap technologies could lead to their broader adoption in renewable energy systems, enhancing both the efficiency and sustainability of wind power generation.

References

  • [1] Tanurun HE, Akin A, Acir A. “Numerical investigation of rib structure effects on performance of wind turbines”. Journal of Polytechnic, 24(3), 1219-1226, 2021.
  • [2] Hassanpour M, Azadani LN. “Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines”. Energy Conversion and Management, 238, 114069, 2021.
  • [3] Chen WH, et al. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines". Applied Energy, 185, 223-232, 2017.
  • [4] Esteban M, Portugal-Pereira J, Mclellan BC, Bricker J, Farzaneh H, Djalilova N, et al. “100% renewable energy system in Japan: Smoothening and ancillary services”. Applied Energy, 224, 698-707, 2018.
  • [5] Tanurun HE, Ata İ, Canli ME, Acir A. “Numerical and experimental investigation of NACA-0018 wind turbine aerofoil model performance for different aspect ratios”. Journal of Polytechnic, 23(2), 371-381, 2020.
  • [6] Mahmood Q, Younas M, Ashiq MGB, Ramay SM, Mahmood, A, Ghaithan HM. “First principle study of lead-free double perovskites halides Rb2Pd(Cl/Br)(6) for solar cells and renewable energy devices: A quantum DFT.” International Journal of Energy Research, 45(10), 14995-15004, 2021.
  • [7] Li JJ, Wang G, Li Z, Yang S, Chong WT, Xiang X. "A review on development of offshore wind energy conversion system". International Journal of Energy Research, 44, 9283-9297, 2020.
  • [8] Su CW, Khan K, Umar M, Zhang W. “Does renewable energy redefine geopolitical risks?”. Energy Policy, 158, 112566, 2021.
  • [9] Ali B, Kumar A. “Development of water demand coefficients for power generation from renewable energy technologies”. Energy Conversion and Management, 143, 470-481, 2017.
  • [10] Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH. “A review on small scale wind turbines”. Renewable and Sustainable Energy Reviews, 56, 1351-1371, 2016.
  • [11] Freere P, Sacher M, Derricott J, Hanson B. “A low cost wind turbine and blade performance”. Wind Engineering, 34(3), 289-302, 2010.
  • [12] Tanürün HE, Acır A. “Investigation of the hydrogen production potential of the H-Darrieus turbines combined with various wind-lens”. International Journal of Hydrogen Energy, 47(55), 23118-23138, 2022.
  • [13] Wang Y, Sun X, Dong X, Zhu B, Huang D, Zheng Z. "Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades". Energy Conversion and Management, 108, 275-86, 2016.
  • [14] Bhuyan S, Biswas A. Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors”. Energy Conversion and Management, 87, 859-67, 2014.
  • [15] Ghasemian M, Ashrafi ZN, Sedaghat A. “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines”. Energy Conversion and Management, 149, 87-100, 2017.
  • [16] Zamani M, Nazari S, Moshizi SA, Maghrebi MJ. "Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine". Energy, 116, 1243-1255, 2016.
  • [17] Barnes A, Hughes B. "Determining the impact of VAWT farm configurations on power output". Renewable Energy, 143, 1111-1120, 2019.
  • [18] Yan Y, Avital E, Williams J, Cui J. "Aerodynamic performance improvements of a vertical axis wind turbine by leading-edge protuberance". Journal of Wind Engineering and Industrial Aerodynamics, 211, 104535, 2021.
  • [19] Hao W, Mao H, Lyu S, Li C. “Study on aerodynamic load reduction and efficiency improvement of VAWT based on DTEF”. Ocean Engineering, 260, 111966, 2022.
  • [20] Islam MR, Mekhilef S, Saidur R. “Progress and recent trends of wind energy technology”. Renewable and Sustainable Energy Reviews, 21, 456-468, 2013.
  • [21] Bhutta MMA, Hayat N, Farooq AU, Ali Z, Jamil SR, Hussain Z. "Vertical axis wind turbine-A review of various configurations and design techniques". Renewable and Sustainable Energy Reviews, 16, 1926-39, 2012.
  • [22] Leung DYC, Yang Y. "Wind energy development and its environmental impact: a review". Renewable Sustainable and Energy Reviews, 16(1), 1031-1039, 2012.
  • [23] Martin GR, Banks AN. “Marine birds: Vision-based wind turbine collision mitigation”. Global Ecology and Conservation, 42, 02386, 2023.
  • [24] Nebel C., Stjernberg T, Tikkanen H., Laaksonen T. “Reduced survival in a soaring bird breeding in wind turbine proximity along the northern Baltic Sea coast”. Biological Conservation, 294, 110604, 2024.
  • [25] Kaya AF, Tanürün HE, Acir A. “Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines”. Journal of Polytechnic, 25(3), 1007-1019, 2022.
  • [26] D’Ambrosio M, Medaglia M. Vertical Axis Wind Turbines. Master Thesis, Halmstad University, Halmstad, Sweden 2010.
  • [27] Sharma S, Sharma RK. "Performance improvement of Savonius rotor using multiple quarter blades - a CFD investigation". Energy Conversion and Management, 127, 43-54, 2016.
  • [28] Islam M, Ting DSK, Fartaj A. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines". Renewable and Sustainable Energy Reviews, 12(4), 1087-109, 2008.
  • [29] Batista NC, Melício R, Mendes VMF, Calderon M, Ramiro A. “On a self-start Darrieus wind turbine: Blade design and field tests”. Renewable and Sustainable Energy Reviews, 52, 508-522, 2015.
  • [30] Pope K, Naterer GF. “Multiple streamtube approximation of flow-induced forces on a Savonius wind turbine”. International Journal of Energy Research, 37, 1079-1087, 2013.
  • [31] Savonius SJ. "The S-Rotor and its applications". Mechanical Engineering, 53(5), 333-338, 1931.
  • [32] Wagner HJ. “Introduction to wind energy systems”. EPJ Web of Conferences, 148, 1-16, 2017.
  • [33] Jin X, Zhao G, Gao K, Ju W. "Darrieus vertical axis wind turbine: Basic research methods". Renewable and Sustainable Energy Reviews, 42, 212-225, 2015.
  • [34] Nurbay N, Çınar A. “Rüzgar türbinlerinin çeşitleri ve birbirleriyle karşılaştırılması”. III. Yenilenebilir Enerji Kaynakları Sempozyumu, Mersin, Türkiye, 19-21 Ekim 2005.
  • [35] Khan M, Bhuyan G, Iqbal MT, Quaicoe JE. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review". Applied Energy, 86(10), 1823-1835, 2009.
  • [36] Kuang L, Su J, Chen Y, Han Z, Zhou D, Zhang K, Bao Y. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: external diffuser system". Energy, 239, 122196, 2022.
  • [37] Liu J, Lin H, Zhang J. "Review on the technical perspectives and commercial viability of vertical axis wind turbines". Ocean Engineering, 182, 608-626, 2019.
  • [38] Wong KH, Chong WT, Poh SC, Shiah YC, Sukiman NL, Wang CT. “3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine”. Renewable Energy, 129, 32-55, 2018.
  • [39] Mohamed, MH. “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes”. Energy, 47(1), 522-530, 2012.
  • [40] Marsh P, Ranmuthugala D, Penesis I, Thomas G. “The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines”. Renewable Energy, 105, 106-116, 2017.
  • [41] Lee YT, Lim HC. “Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine”. Renewable Energy, 83, 407-415, 2015.
  • [42] Sobhani E, Ghaffari M, Maghrebi MJ. “Numerical investigation of dimple effects on Darrieus vertical axis wind turbine”. Energy, 133, 231-241, 2017.
  • [43] Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Shimizu K, Ogasawara T, Nakai A, Kasuya T. “Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: for predicting aerodynamic loads and performance”. Energy, 106, 443-452, 2016.
  • [44] Marco AD, Coiro DP, Cucco D, Nicolosi F. "A numerical study on a vertical axis wind turbine with inclined arms". International Journal of Aeronautical Engineering, 2014(1), 1-14, 2014.
  • [45] Orlandi A, Collu M, Zanforlin S, Shires A. "3D URANS analysis of a vertical axis wind turbine in skewed flows". Journal of Wind Engineering and Industrial Aerodynamics, 147, 77-84, 2015.
  • [46] Li QA, Maeda T, Kamada Y, Murata J, Yamamoto M, Ogasawara T, Shimizu K, Kogaki T. "Study on power performance for straight-bladed vertical Axis wind turbine by field and wind tunnel test". Renewable Energy, 90, 291-300, 2016.
  • [47] Li QA, Kamada Y, Maeda T, Murata J, Iida K, Okumura T. "Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism". Energy, 99, 20-31, 2016.
  • [48] Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M. “The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine”. Energy, 111, 260-271, 2016.
  • [49] Zhu C, Yang H, Qiu Y, Zhou G, Wang L, Feng Y, Shen X, Shen Z, Feng X, Wang T. “Effects of the Reynolds number and reduced frequency on the aerodynamic performance and dynamic stall behaviors of a vertical axis wind turbine”. Energy Conversion and Management, 293, 117513, 2023.
  • [50] Hau NR, Augier B, Paillard B, Träsch M, Matoug C. “The assessment of a fast computational method in predicting the unsteady loads of vertical axis wind turbines undergoing floating motion”. Journal of Wind Engineering and Industrial Aerodynamics, 240, 105449, 2023.
  • [51] Posa A, Parker CM, Leftwich MC, Balaras E. "Wake structure of a single vertical axis wind turbine". International Journal of Heat and Fluid Flow, 61, 75-84, 2016.
  • [52] Li Q, Cai C, Maeda T, Kamada Y, Shimizu K, Dong Y, Zhang F, Xu J. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method". Energy, 225, 120274, 2021.
  • [53] Maldonado V, Castillo L, Thormann A, Meneveau C. "The role of free stream turbulence with large integral scale on the aerodynamic performance of an experimental low Reynolds number S809 wind turbine blade". Journal of Wind Engineering and Industrial Aerodynamics, 142, 246-257, 2015.
  • [54] Miao W, Liu Q, Zhang Q, Xu Z, Li C, Yue M, Zhang, Ye Z. "Recommendation for strut designs of vertical axis wind turbines: Effects of strut profiles and connecting configurations on the aerodynamic performance". Energy Conversion and Management, 276, 116436, 2023.
  • [55] Mansi A, Aydin D. "The impact of trailing edge flap on the aerodynamic performance of small-scale horizontal axis wind turbine". Energy Conversion and Management, 256, 115396, 2022.
  • [56] Zhang Y, Ramdoss V, Saleem Z, Wang X, Schepers G, Ferreira C. "Effects of root Gurney flaps on the aerodynamic performance of a horizontal axis wind turbine". Energy, 187, 115955, 2019.
  • [57] Horcas SG, Madsen MHA, Sørensen NN, Zahle F, Barlas T. "Influence of the installation of a trailing edge flap on the vortex induced vibrations of a wind turbine blade". Journal of Wind Engineering and Industrial Aerodynamics, 229, 105118, 2022.
  • [58] Guangxing G, Weijun Z, Zhenye S, Wenzhong S, Jiufa C, Shifeng F. "Drag reducer design of wind turbine blade under flap-wise fatigue testing". Composite Structures, 318, 117094, 2023.
  • [59] Farzadi R, Bazargan M. "3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode". Energy, 278(B), 128040, 2023.
  • [60] Fiedler AJ, Tullis S. "Blade offset and pitch effects on a high solidity vertical axis wind turbine". Wind Engineering, 33(3), 237-46, 2009.
  • [61] Shen Z, Gong S, Zu H, Guo W. “Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM”. Energy, 299, 131406, 2024.
  • [62] Borg M, Collu M, Kolios A. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics". Renewable Sustainable Energy Reviews, 39, 1226-34, 2014.
  • [63] Borg M, Collu M. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part III: Hydrodynamics and coupled modelling approaches". Renewable Sustainable Energy Reviews, 46, 296-310, 2015.
  • [64] Wikipedia. “Flap (aeronautics)”. https://en.wikipedia.org/wiki/Flap_ (04.05.2024).
  • [65] Çakıroğlu R, Tanürün HE, Acır A, Üçgül F, Olkun S. “Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 167, 2023.
  • [66] Bouzaher MT, Hadid M. "Active control of the vertical axis wind turbine by the association of flapping wings to their blades". Procedia Computer Science, 52, 714-722, 2015.
  • [67] Ismail MF, Vijayaraghavan K. “The effects of aerofoil profile modification on a vertical axis wind turbine performance”. Energy, 80, 20-31, 2015.
  • [68] Bianchini A, Balduzzi F, Di Rosa D, Ferrara G. “On the use of Gurney Flaps for the aerodynamic performance augmentation of Darrieus wind turbines”. Energy Conversion and Management, 184, 402-415, 2019.
  • [69] Ni L, Miao W, Li C, Liu Q. “Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations”. Energy, 215(A), 118915, 2021.
  • [70] Zhu H, Hao W, Li C, Luo S, Liu Q, Gao C. “Effect of geometric parameters of Gurney flap on performance enhancement of straight-bladed vertical axis wind turbine”. Renewable Energy, 165(Part 1), 464-480, 2021.
  • [71] Liu Q, Miao W, Q Ye, Li C. “Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine”. Renewable Energy, 185, 1124-1138, 2022.
  • [72] Syawitri TP, Yao Y, Yao J, Chandra B. “Geometry optimization of vertical axis wind turbine with Gurney flap for performance enhancement at low, medium and high ranges of tip speed ratios”. Sustainable Energy Technologies and Assessments, 49, 101779, 2022.
  • [73] Zhu H, Hao W, Li C, Ding Q. “Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap”. Journal of Wind Engineering and Industrial Aerodynamics, 186, 17-31, 2019.
  • [74] Hao W, Li C. “Performance improvement of adaptive flap on flow separation control and its effect on VAWT”. Energy, 213, 118809, 2020.
  • [75] Hao W, Bashir, M, Li, C, Sun C. “Flow control for high-solidity vertical axis wind turbine based on adaptive flap”. Energy Conversion and Management, 249, 114845, 2021.
  • [76] Tanürün HE “Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method”. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 71-90, 2024.
  • [77] Hu J, Ye X, Wu Y, Li C. “On lift enhancement and noise reduction in serrated gurney flap airfoil of wind turbines using proper orthogonal decomposition”. Ocean Engineering, 287, 115706, 2023.
  • [78] Ye X, Hu J, Zheng N, Li C. “Numerical study on aerodynamic performance and noise of wind turbine airfoils with serrated gurney flap”. Energy, 262, 125574, 2023.
  • [79] Attie C, ElCheikh A, Nader J, Elkhoury M. “Performance enhancement of a vertical axis wind turbine using a slotted deflective flap at the trailing edge”. Energy Conversion and Management, 273, 116388, 2022.
  • [80] Han Z, Chen H, Chen Y, Su J, Zhou D, Zhu H, Xia T, Tu J. “Aerodynamic performance optimization of vertical axis wind turbine with straight blades based on synergic control of pitch and flap”. Sustainable Energy Technologies and Assessments, 57, 103250, 2023.
  • [81] Zhang L, Gu J, Hu K, Zhu, H, Miao J, Li X, Ma D, Mi Y, Wang Z. “Influences of trailing edge split flap on the aerodynamic performance of vertical axis wind turbine”. Energy Science & Engineering, 9, 101-115, 2021.
  • [82] Tavallaeinejad M, Fereidoooni A, Païdoussis MP, Grewal A, Wickramasinghe V. “An application of cantilevered plates subjected to extremely large amplitude deformations: A self-starting mechanism for vertical axis wind turbines”. Journal of Fluids and Structures, 113, 103666, 2022.
  • [83] Aboelezz A, Ghali H, El-Bayoumi G, Abdelrahman MM. “Novel performance enhancement of straight blade vertical axis wind turbines through cross-flow fan integration”. Sustainable Energy Technologies and Assessments, 60, 103440, 2023.

H-Darrieus dikey eksenli rüzgâr türbinlerinde kanatçık teknolojilerinin etkisinin kapsamlı değerlendirilmesi

Year 2025, Volume: 31 Issue: 4, 522 - 535, 25.08.2025

Abstract

Bu çalışma, Dikey Eksenli Rüzgâr Türbinleri (DERT'ler) üzerinde kanatçık teknolojilerinin uygulanması ve etkileri üzerine kapsamlı bir analiz sunmaktadır. Bir tür akış kontrol cihazı olan kanatçık teknolojileri, akış ayrılmasını geciktirerek, kaldırma kuvvetini artırarak ve sürtünmeyi azaltarak aerodinamik performansı artırmış olduğu kanıtlanmıştır. Çeşitli deneysel çalışmalar ve sayısal simülasyonlar, kanatçık teknolojilerinin özellikle düşük rüzgâr hızlarında DERT'lerin verimliliğini önemli ölçüde nasıl iyileştirdiğini göstermektedir. Ayrıca, kanatçık teknolojilerinin operasyonel rüzgâr hızı aralığını genişletme ve DERT'lerin kendiliğinden başlama yeteneklerini artırma rolü vurgulanmaktadır. Bu iyileştirme, rüzgâr koşullarının oldukça değişken olduğu kentsel ve banliyö ortamlarında DERT 'lerin uygulanabilirliğine katkı sağlaması açısından hayati öneme sahiptir. Bu çalışma, performans artırımını maksimize etmek için flap teknolojilerinin türbin kanatları üzerindeki optimal konumlandırılması ve düzenlenmesine derinlemesine inmektedir. Böylece, makale DERT 'lerin performansını artırmada anahtar bir aerodinamik modifikasyon olarak VG'leri (Girdap Jeneratörleri) kapsamlı bir şekilde ele almakta ve bu alandaki araştırma ve optimizasyonun devam etmesini teşvik etmektedir. Kanatçık teknolojilerinin daha da geliştirilmesi ve iyileştirilmesi, yenilenebilir enerji sistemlerinde daha geniş bir benimsemeye yol açabilir, rüzgâr gücü üretiminin hem verimliliğini hem de sürdürülebilirliğini artırabilir.

References

  • [1] Tanurun HE, Akin A, Acir A. “Numerical investigation of rib structure effects on performance of wind turbines”. Journal of Polytechnic, 24(3), 1219-1226, 2021.
  • [2] Hassanpour M, Azadani LN. “Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines”. Energy Conversion and Management, 238, 114069, 2021.
  • [3] Chen WH, et al. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines". Applied Energy, 185, 223-232, 2017.
  • [4] Esteban M, Portugal-Pereira J, Mclellan BC, Bricker J, Farzaneh H, Djalilova N, et al. “100% renewable energy system in Japan: Smoothening and ancillary services”. Applied Energy, 224, 698-707, 2018.
  • [5] Tanurun HE, Ata İ, Canli ME, Acir A. “Numerical and experimental investigation of NACA-0018 wind turbine aerofoil model performance for different aspect ratios”. Journal of Polytechnic, 23(2), 371-381, 2020.
  • [6] Mahmood Q, Younas M, Ashiq MGB, Ramay SM, Mahmood, A, Ghaithan HM. “First principle study of lead-free double perovskites halides Rb2Pd(Cl/Br)(6) for solar cells and renewable energy devices: A quantum DFT.” International Journal of Energy Research, 45(10), 14995-15004, 2021.
  • [7] Li JJ, Wang G, Li Z, Yang S, Chong WT, Xiang X. "A review on development of offshore wind energy conversion system". International Journal of Energy Research, 44, 9283-9297, 2020.
  • [8] Su CW, Khan K, Umar M, Zhang W. “Does renewable energy redefine geopolitical risks?”. Energy Policy, 158, 112566, 2021.
  • [9] Ali B, Kumar A. “Development of water demand coefficients for power generation from renewable energy technologies”. Energy Conversion and Management, 143, 470-481, 2017.
  • [10] Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH. “A review on small scale wind turbines”. Renewable and Sustainable Energy Reviews, 56, 1351-1371, 2016.
  • [11] Freere P, Sacher M, Derricott J, Hanson B. “A low cost wind turbine and blade performance”. Wind Engineering, 34(3), 289-302, 2010.
  • [12] Tanürün HE, Acır A. “Investigation of the hydrogen production potential of the H-Darrieus turbines combined with various wind-lens”. International Journal of Hydrogen Energy, 47(55), 23118-23138, 2022.
  • [13] Wang Y, Sun X, Dong X, Zhu B, Huang D, Zheng Z. "Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades". Energy Conversion and Management, 108, 275-86, 2016.
  • [14] Bhuyan S, Biswas A. Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors”. Energy Conversion and Management, 87, 859-67, 2014.
  • [15] Ghasemian M, Ashrafi ZN, Sedaghat A. “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines”. Energy Conversion and Management, 149, 87-100, 2017.
  • [16] Zamani M, Nazari S, Moshizi SA, Maghrebi MJ. "Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine". Energy, 116, 1243-1255, 2016.
  • [17] Barnes A, Hughes B. "Determining the impact of VAWT farm configurations on power output". Renewable Energy, 143, 1111-1120, 2019.
  • [18] Yan Y, Avital E, Williams J, Cui J. "Aerodynamic performance improvements of a vertical axis wind turbine by leading-edge protuberance". Journal of Wind Engineering and Industrial Aerodynamics, 211, 104535, 2021.
  • [19] Hao W, Mao H, Lyu S, Li C. “Study on aerodynamic load reduction and efficiency improvement of VAWT based on DTEF”. Ocean Engineering, 260, 111966, 2022.
  • [20] Islam MR, Mekhilef S, Saidur R. “Progress and recent trends of wind energy technology”. Renewable and Sustainable Energy Reviews, 21, 456-468, 2013.
  • [21] Bhutta MMA, Hayat N, Farooq AU, Ali Z, Jamil SR, Hussain Z. "Vertical axis wind turbine-A review of various configurations and design techniques". Renewable and Sustainable Energy Reviews, 16, 1926-39, 2012.
  • [22] Leung DYC, Yang Y. "Wind energy development and its environmental impact: a review". Renewable Sustainable and Energy Reviews, 16(1), 1031-1039, 2012.
  • [23] Martin GR, Banks AN. “Marine birds: Vision-based wind turbine collision mitigation”. Global Ecology and Conservation, 42, 02386, 2023.
  • [24] Nebel C., Stjernberg T, Tikkanen H., Laaksonen T. “Reduced survival in a soaring bird breeding in wind turbine proximity along the northern Baltic Sea coast”. Biological Conservation, 294, 110604, 2024.
  • [25] Kaya AF, Tanürün HE, Acir A. “Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines”. Journal of Polytechnic, 25(3), 1007-1019, 2022.
  • [26] D’Ambrosio M, Medaglia M. Vertical Axis Wind Turbines. Master Thesis, Halmstad University, Halmstad, Sweden 2010.
  • [27] Sharma S, Sharma RK. "Performance improvement of Savonius rotor using multiple quarter blades - a CFD investigation". Energy Conversion and Management, 127, 43-54, 2016.
  • [28] Islam M, Ting DSK, Fartaj A. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines". Renewable and Sustainable Energy Reviews, 12(4), 1087-109, 2008.
  • [29] Batista NC, Melício R, Mendes VMF, Calderon M, Ramiro A. “On a self-start Darrieus wind turbine: Blade design and field tests”. Renewable and Sustainable Energy Reviews, 52, 508-522, 2015.
  • [30] Pope K, Naterer GF. “Multiple streamtube approximation of flow-induced forces on a Savonius wind turbine”. International Journal of Energy Research, 37, 1079-1087, 2013.
  • [31] Savonius SJ. "The S-Rotor and its applications". Mechanical Engineering, 53(5), 333-338, 1931.
  • [32] Wagner HJ. “Introduction to wind energy systems”. EPJ Web of Conferences, 148, 1-16, 2017.
  • [33] Jin X, Zhao G, Gao K, Ju W. "Darrieus vertical axis wind turbine: Basic research methods". Renewable and Sustainable Energy Reviews, 42, 212-225, 2015.
  • [34] Nurbay N, Çınar A. “Rüzgar türbinlerinin çeşitleri ve birbirleriyle karşılaştırılması”. III. Yenilenebilir Enerji Kaynakları Sempozyumu, Mersin, Türkiye, 19-21 Ekim 2005.
  • [35] Khan M, Bhuyan G, Iqbal MT, Quaicoe JE. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review". Applied Energy, 86(10), 1823-1835, 2009.
  • [36] Kuang L, Su J, Chen Y, Han Z, Zhou D, Zhang K, Bao Y. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: external diffuser system". Energy, 239, 122196, 2022.
  • [37] Liu J, Lin H, Zhang J. "Review on the technical perspectives and commercial viability of vertical axis wind turbines". Ocean Engineering, 182, 608-626, 2019.
  • [38] Wong KH, Chong WT, Poh SC, Shiah YC, Sukiman NL, Wang CT. “3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine”. Renewable Energy, 129, 32-55, 2018.
  • [39] Mohamed, MH. “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes”. Energy, 47(1), 522-530, 2012.
  • [40] Marsh P, Ranmuthugala D, Penesis I, Thomas G. “The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines”. Renewable Energy, 105, 106-116, 2017.
  • [41] Lee YT, Lim HC. “Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine”. Renewable Energy, 83, 407-415, 2015.
  • [42] Sobhani E, Ghaffari M, Maghrebi MJ. “Numerical investigation of dimple effects on Darrieus vertical axis wind turbine”. Energy, 133, 231-241, 2017.
  • [43] Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Shimizu K, Ogasawara T, Nakai A, Kasuya T. “Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: for predicting aerodynamic loads and performance”. Energy, 106, 443-452, 2016.
  • [44] Marco AD, Coiro DP, Cucco D, Nicolosi F. "A numerical study on a vertical axis wind turbine with inclined arms". International Journal of Aeronautical Engineering, 2014(1), 1-14, 2014.
  • [45] Orlandi A, Collu M, Zanforlin S, Shires A. "3D URANS analysis of a vertical axis wind turbine in skewed flows". Journal of Wind Engineering and Industrial Aerodynamics, 147, 77-84, 2015.
  • [46] Li QA, Maeda T, Kamada Y, Murata J, Yamamoto M, Ogasawara T, Shimizu K, Kogaki T. "Study on power performance for straight-bladed vertical Axis wind turbine by field and wind tunnel test". Renewable Energy, 90, 291-300, 2016.
  • [47] Li QA, Kamada Y, Maeda T, Murata J, Iida K, Okumura T. "Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism". Energy, 99, 20-31, 2016.
  • [48] Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M. “The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine”. Energy, 111, 260-271, 2016.
  • [49] Zhu C, Yang H, Qiu Y, Zhou G, Wang L, Feng Y, Shen X, Shen Z, Feng X, Wang T. “Effects of the Reynolds number and reduced frequency on the aerodynamic performance and dynamic stall behaviors of a vertical axis wind turbine”. Energy Conversion and Management, 293, 117513, 2023.
  • [50] Hau NR, Augier B, Paillard B, Träsch M, Matoug C. “The assessment of a fast computational method in predicting the unsteady loads of vertical axis wind turbines undergoing floating motion”. Journal of Wind Engineering and Industrial Aerodynamics, 240, 105449, 2023.
  • [51] Posa A, Parker CM, Leftwich MC, Balaras E. "Wake structure of a single vertical axis wind turbine". International Journal of Heat and Fluid Flow, 61, 75-84, 2016.
  • [52] Li Q, Cai C, Maeda T, Kamada Y, Shimizu K, Dong Y, Zhang F, Xu J. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method". Energy, 225, 120274, 2021.
  • [53] Maldonado V, Castillo L, Thormann A, Meneveau C. "The role of free stream turbulence with large integral scale on the aerodynamic performance of an experimental low Reynolds number S809 wind turbine blade". Journal of Wind Engineering and Industrial Aerodynamics, 142, 246-257, 2015.
  • [54] Miao W, Liu Q, Zhang Q, Xu Z, Li C, Yue M, Zhang, Ye Z. "Recommendation for strut designs of vertical axis wind turbines: Effects of strut profiles and connecting configurations on the aerodynamic performance". Energy Conversion and Management, 276, 116436, 2023.
  • [55] Mansi A, Aydin D. "The impact of trailing edge flap on the aerodynamic performance of small-scale horizontal axis wind turbine". Energy Conversion and Management, 256, 115396, 2022.
  • [56] Zhang Y, Ramdoss V, Saleem Z, Wang X, Schepers G, Ferreira C. "Effects of root Gurney flaps on the aerodynamic performance of a horizontal axis wind turbine". Energy, 187, 115955, 2019.
  • [57] Horcas SG, Madsen MHA, Sørensen NN, Zahle F, Barlas T. "Influence of the installation of a trailing edge flap on the vortex induced vibrations of a wind turbine blade". Journal of Wind Engineering and Industrial Aerodynamics, 229, 105118, 2022.
  • [58] Guangxing G, Weijun Z, Zhenye S, Wenzhong S, Jiufa C, Shifeng F. "Drag reducer design of wind turbine blade under flap-wise fatigue testing". Composite Structures, 318, 117094, 2023.
  • [59] Farzadi R, Bazargan M. "3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode". Energy, 278(B), 128040, 2023.
  • [60] Fiedler AJ, Tullis S. "Blade offset and pitch effects on a high solidity vertical axis wind turbine". Wind Engineering, 33(3), 237-46, 2009.
  • [61] Shen Z, Gong S, Zu H, Guo W. “Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM”. Energy, 299, 131406, 2024.
  • [62] Borg M, Collu M, Kolios A. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics". Renewable Sustainable Energy Reviews, 39, 1226-34, 2014.
  • [63] Borg M, Collu M. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part III: Hydrodynamics and coupled modelling approaches". Renewable Sustainable Energy Reviews, 46, 296-310, 2015.
  • [64] Wikipedia. “Flap (aeronautics)”. https://en.wikipedia.org/wiki/Flap_ (04.05.2024).
  • [65] Çakıroğlu R, Tanürün HE, Acır A, Üçgül F, Olkun S. “Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 167, 2023.
  • [66] Bouzaher MT, Hadid M. "Active control of the vertical axis wind turbine by the association of flapping wings to their blades". Procedia Computer Science, 52, 714-722, 2015.
  • [67] Ismail MF, Vijayaraghavan K. “The effects of aerofoil profile modification on a vertical axis wind turbine performance”. Energy, 80, 20-31, 2015.
  • [68] Bianchini A, Balduzzi F, Di Rosa D, Ferrara G. “On the use of Gurney Flaps for the aerodynamic performance augmentation of Darrieus wind turbines”. Energy Conversion and Management, 184, 402-415, 2019.
  • [69] Ni L, Miao W, Li C, Liu Q. “Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations”. Energy, 215(A), 118915, 2021.
  • [70] Zhu H, Hao W, Li C, Luo S, Liu Q, Gao C. “Effect of geometric parameters of Gurney flap on performance enhancement of straight-bladed vertical axis wind turbine”. Renewable Energy, 165(Part 1), 464-480, 2021.
  • [71] Liu Q, Miao W, Q Ye, Li C. “Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine”. Renewable Energy, 185, 1124-1138, 2022.
  • [72] Syawitri TP, Yao Y, Yao J, Chandra B. “Geometry optimization of vertical axis wind turbine with Gurney flap for performance enhancement at low, medium and high ranges of tip speed ratios”. Sustainable Energy Technologies and Assessments, 49, 101779, 2022.
  • [73] Zhu H, Hao W, Li C, Ding Q. “Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap”. Journal of Wind Engineering and Industrial Aerodynamics, 186, 17-31, 2019.
  • [74] Hao W, Li C. “Performance improvement of adaptive flap on flow separation control and its effect on VAWT”. Energy, 213, 118809, 2020.
  • [75] Hao W, Bashir, M, Li, C, Sun C. “Flow control for high-solidity vertical axis wind turbine based on adaptive flap”. Energy Conversion and Management, 249, 114845, 2021.
  • [76] Tanürün HE “Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method”. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 71-90, 2024.
  • [77] Hu J, Ye X, Wu Y, Li C. “On lift enhancement and noise reduction in serrated gurney flap airfoil of wind turbines using proper orthogonal decomposition”. Ocean Engineering, 287, 115706, 2023.
  • [78] Ye X, Hu J, Zheng N, Li C. “Numerical study on aerodynamic performance and noise of wind turbine airfoils with serrated gurney flap”. Energy, 262, 125574, 2023.
  • [79] Attie C, ElCheikh A, Nader J, Elkhoury M. “Performance enhancement of a vertical axis wind turbine using a slotted deflective flap at the trailing edge”. Energy Conversion and Management, 273, 116388, 2022.
  • [80] Han Z, Chen H, Chen Y, Su J, Zhou D, Zhu H, Xia T, Tu J. “Aerodynamic performance optimization of vertical axis wind turbine with straight blades based on synergic control of pitch and flap”. Sustainable Energy Technologies and Assessments, 57, 103250, 2023.
  • [81] Zhang L, Gu J, Hu K, Zhu, H, Miao J, Li X, Ma D, Mi Y, Wang Z. “Influences of trailing edge split flap on the aerodynamic performance of vertical axis wind turbine”. Energy Science & Engineering, 9, 101-115, 2021.
  • [82] Tavallaeinejad M, Fereidoooni A, Païdoussis MP, Grewal A, Wickramasinghe V. “An application of cantilevered plates subjected to extremely large amplitude deformations: A self-starting mechanism for vertical axis wind turbines”. Journal of Fluids and Structures, 113, 103666, 2022.
  • [83] Aboelezz A, Ghali H, El-Bayoumi G, Abdelrahman MM. “Novel performance enhancement of straight blade vertical axis wind turbines through cross-flow fan integration”. Sustainable Energy Technologies and Assessments, 60, 103440, 2023.
There are 83 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Review Article
Authors

Himmet Erdi Tanürün

Publication Date August 25, 2025
Submission Date May 5, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2025 Volume: 31 Issue: 4

Cite

APA Tanürün, H. E. (2025). Comprehensive review of the effect of flap technologies in H-Darrieus vertical axis wind turbines. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(4), 522-535.
AMA Tanürün HE. Comprehensive review of the effect of flap technologies in H-Darrieus vertical axis wind turbines. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2025;31(4):522-535.
Chicago Tanürün, Himmet Erdi. “Comprehensive Review of the Effect of Flap Technologies in H-Darrieus Vertical Axis Wind Turbines”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 4 (August 2025): 522-35.
EndNote Tanürün HE (August 1, 2025) Comprehensive review of the effect of flap technologies in H-Darrieus vertical axis wind turbines. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 4 522–535.
IEEE H. E. Tanürün, “Comprehensive review of the effect of flap technologies in H-Darrieus vertical axis wind turbines”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 4, pp. 522–535, 2025.
ISNAD Tanürün, Himmet Erdi. “Comprehensive Review of the Effect of Flap Technologies in H-Darrieus Vertical Axis Wind Turbines”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/4 (August2025), 522-535.
JAMA Tanürün HE. Comprehensive review of the effect of flap technologies in H-Darrieus vertical axis wind turbines. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:522–535.
MLA Tanürün, Himmet Erdi. “Comprehensive Review of the Effect of Flap Technologies in H-Darrieus Vertical Axis Wind Turbines”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 4, 2025, pp. 522-35.
Vancouver Tanürün HE. Comprehensive review of the effect of flap technologies in H-Darrieus vertical axis wind turbines. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(4):522-35.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif