Araştırma Makalesi
BibTex RIS Kaynak Göster

Fiber metal tabakalı kompozitlerin preste şekillendirilmesinde geri yaylanma davranışı

Yıl 2025, Cilt: 31 Sayı: 4, 580 - 587, 25.08.2025

Öz

Abkant preste şekillendirme prosesi, fiber metal tabakalı (FML) kompozitlerin üretimi için uygun bir yöntemdir. Ancak şekillendirme sırasında oluşan geri yaylanma, kompozit plakanın son boyut toleransında ciddi sorunlara neden olmaktadır. Bu çalışmada, fiber metal tabakalı (FML) kompozitlerin abkant preste v-şekilli şekillendirme prosesindeki geri yaylanma davranışı deneysel olarak incelenmiştir. FML kompozitlerde dış yüzeylerde 6061-T6 Alüminyum, iç katmanlarda ise karbon, cam, karbon/cam ve aramid elyaf takviyeli epoksi kompozit levhalar kullanılmıştır. V-şekilli abkant pres şekillendirme prosesinde bükme açısı ve kalıp genişliği parametrelerinin geri yaylanma davranışına etkileri incelenmiştir. Şekillendirme prosesleri 140°, 150° ve 160° bükme açıları ve 16 ve 20 mm olmak üzere iki farklı kalıp genişliği ile gerçekleştirilmiştir. Deneyler sonucunda en yüksek geri yaylanma 15.1° ile alüminyum-karbon fiber-alüminyum kompozit levhada, en düşük geri yaylanma ise 0,4° ile alüminyum-cam/karbon fiber-alüminyum kompozit levhada gözlenmiştir. En yüksek geri yaylanma -1.7° ile alüminyum-aramid fiber-alüminyum kompozit levhada elde edilirken, en düşük geri yaylanma -0,3° ile alüminyum-cam fiber-alüminyum kompozit levhada elde edilmiştir.

Kaynakça

  • [1] Cheng H, Zhang Z, Ren M, Jia H. “Experimental and Numerical Simulation Studies on V-Shaped Bending of Aluminum/CFRP Laminates”. Materials, 16(14), 4939, 2023.
  • [2] Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S. “Stamp forming of polypropylene based fibre-metal laminates: The effect of process variables on formability”. Journal of Materials Processing Technology, 172(2), 163-168, 2006.
  • [3] Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S. “The effect of process temperature on the formability of polypropylene based fibre-metal laminates”. Composites Part A: Applied Science and Manufacturing, 36(8), 1158-1166, 2005.
  • [4] Ding Z, Wang H, Luo J, Li N. “A review on forming technologies of fibre metal laminates”. International Journal of Lightweight Materials and Manufacture, 4(1), 110-126, 2021.
  • [5] Thomas LC, Kumar V, Gangwar A, Pisupati M, Gupta C, Panda SK. “Computational modelling and experimental techniques for fibre metal laminate structural analysis: a comprehensive review”. Archives of Computational Methods in Engineering, 31(1), 351-369, 2024.
  • [6] Pan L, Wang Y, Hu Y, Lv Y, Ali A, Roy N, Ma W, Tao J. “Investigation on the effect of configuration on tensile and flexural properties of aluminum/self-reinforced polypropylene fiber metal laminates”. Journal of Sandwich Structures & Materials, 22(6), 1770-1785, 2020.
  • [7] Fayzulla BJ, Eroglu M, Erkliğ A. “Effect of polyurethane matrix and steel fiber in combination with glass fiber or basalt fiber on the properties of hybrid composite laminates”. Materials Testing, 65(10), 1587–1598, 2023.
  • [8] Blala H, Lang L, Khan S, Li L, Siji S, Guelailia A, Slimane SA, Alexandrov S. “Forming challenges of small and complex fiber metal laminate parts in aerospace applications-a review”. International Journal of Advanced Manufacturing Technology, 126, 2509–2543, 2023.
  • [9] Keipour S, Gerdooei M. “Springback behavior of fiber metal laminates in hat-shaped draw bending process: experimental and numerical evaluation”. International Journal of Advanced Manufacturing Technology, 100(5–8), 1755-1765, 2019.
  • [10] Hwang JH, Jin CK, Lee MS, Choi SW, Kang CG. “Effect of surface roughness on the bonding strength and spring-back of a CFRP/CR980 hybrid composite”. Metals, 8(9), 1-12, 2018.
  • [11] Khan SH, Sharma AP. “Influence of metal/composite interface on the damage behavior and energy absorption mechanisms of FMLs against projectile impact”. Defence Technology, 18(3), 441-456, 2022.
  • [12] Guo Y, Chen Z, Li F, Xu X, Chen J, Ren Y, Wang Y. “Study on formability and failure modes of steel/CFRP based FMLs consisting of carbon fiber reinforced polymer prepreg and steel sheet”. Composite Structures, 281(11), 114980, 2022.
  • [13] Li H, Tian J, Fei W, Han Z, Tao G, Xu Y, Xu X, Tao J. “Spring-back and failure characteristics of roll bending of GLARE laminates”. Materials Research Express, 6(8), 0865b2, 2019.
  • [14] Hwang JH, Jin CK, Seo HY, Kang CG. “Effect of the number of CFRP prepregs and roughness at the bonding area on the spring-back and flexural strength of hybrid composites of CFRP combined with CR980”. Metals, 9(10), 1054, 2019.
  • [15] Aghchai AJ, Abolghasemi A, Moradkhani B, Tajik M. “Experimental, theoretical and numerical investigation of springback behavior of Al/composite/Al sandwich sheet”. Journal of Sandwich Structures and Materials, 19(6), 659-678, 2017.
  • [16] Graf A, Kräusel V, Rodio A, Lanzotti A. “Development of a springback prediction for a hybrid laminate with sensor functionality”. IOP Conference Series: Materials Science and Engineering, 1157(1), 012032, 2021.
  • [17] Zhang Y, Wan Y, Nakamura T, Takahashi J. “Effect of springback ratio on bending and impact property of carbon fiber reinforced thermoplastics sandwich structures”. 21st International Conference on Composite Materials, China, 20-25 January 2017.
  • [18] Jung WK, Chu WS, Ahn SH, Won MS. “Measurement and compensation of spring-back of a hybrid composite beam”. Journal of Composite Materials, 41(7), 851-864, 2007.
  • [19] Uriya Y, Ikeuch K, Yanagimoto J. “Cold and warm V-bending test for carbon-fiber-reinforced plastic sheet”. Procedia Engineering, 81(10), 1633-1638, 2014.
  • [20] McKown S, Cantwell WJ, Jones N. “Investigation of scaling effects in fiber-metal laminates”. Journal of Composite Materials, 42(9), 865–888, 2008.
  • [21] Khalili SMR, Daghigh V, Farsani RE. “Mechanical behavior of basalt fiber-reinforced and basalt fiber metal laminate composites under tensile and bending loads”. Journal of Reinforced Plastics and Composites, 30(8), 647-659, 2011.
  • [22] Safari M, Sousa RA, Fernandes F, Salamat-Talab M, Abdollahzadeh A. “Creep age forming of fiber metal laminates: Effects of process time and temperature and stacking sequence of core material”. Materials, 14(24), 2021.
  • [23] Ouled Ahmed Ben Ali R, Chatti S. “Springback Prediction of Sandwich Panel using Machine Learning Methods”. Mechanics of Advanced Composite Structures, 10(1), 11-20, 2023.
  • [24] Karabulut S, Esen İ. “Experimental investigation of the effect of process parameters on springback behavior of SCGADUB1180 high strength sheet”. Pamukkale University Journal of Engineering Sciences, 29(1), 68-75, 2023.
  • [25] Taşdemir V, Şen N, Seçgin Ö. “Investigation of the springback behavior of Erdemir 7136 sheet formed by rolling blank holder incremental sheet forming method”. Pamukkale University Journal of Engineering Sciences, 27(1), 90-95, 2021.
  • [26] Karaağaç İ, Uluer O. “ Experimental investigation of effect of process parameters on springback in v bending process”. Pamukkale University Journal of Engineering Sciences, 23(8), 990-993, 2017.
  • [27] Kim SY, Choi WJ, Park SY. “Spring-back characteristics of fiber metal laminate (GLARE) in brake forming process”. International Journal of Advanced Manufacturing Technology, 32(5-6), 445-451, 2007.
  • [28] Parsa MH, Al Ahkami SN, Ettehad M. “Experimental and finite element study on the spring back of double curved aluminum/polypropylene/aluminum sandwich sheet”. Materials and Design, 31(9), 4174-4183, 2010.
  • [29] Choi SW, Lee MS, Kang CG. “Effect of process parameters and laminating methods on spring-back in V-bending of CFRP/CR340 hybrid composites”. International Journal of Precision Engineering and Manufacturing, 17(3), 395-400, 2016.
  • [30] Yanagimoto J, Ikeuchi K. “Sheet forming process of carbon fiber reinforced plastics for lightweight parts”. CIRP Annals-Manufacturing Technology, 61(1), 247-250, 2012.
  • [31] Hahn M, Khalifa NB, Weddeling C, Shabaninejad A. “Springback behavior of carbon-fber-reinforced plastic laminates with metal cover layers in V-die bending”. Journal of Manufacturing Science and Engineering, 138(12), 121016, 2016.
  • [32] Wang J, Li J, Fu C, Zhang G, Zhu W, Li X, Yanagimoto J. “Study on influencing factors of bending springback for metal fiber laminates”. Composite Structures, 261, 113558, 2021.
  • [33] Huang Z, Sugiyama S, Yanagimoto J. “Hybrid joining process for carbon fiber reinforced thermosetting plastic and metallic thin sheets by chemical bonding and plastic deformation”. Journal of Materials Processing Technology, 213(11), 1864-1874, 2013.
  • [34] Isiktas A, Taskin V. “Springback Behavior of Fiber Metal Laminates with Carbon Fiber-Reinforced Core in V-Bending Process”. Arabian Journal for Science and Engineering, 45(11), 9357-9366, 2020.
  • [35] Kaçal A, Yıldırım F, Koyunbakan M. ,“Sac Malzeme Yüzey Pürüzlülüğünün Fiber-Metal Tabakalı Kompozitlerin Mekanik Özelliklerine Olan Etkisi”. El-Cezerî Journal of Science and Engineering, 8(3), 1215-1228, 2021.
  • [36] Lu Y, Li Y, Zhang Y, Dong, L. “Manufacture of Al/CF/PEEK curved beams by hot stamping forming process”. Materials and Manufacturing Processes, 37(14), 1597-1609, 2022.
  • [37] Rajkumar GR, Krishna M, Narasimhamurthy HN, Keshavamurthy YC, Nataraj JR. “Investigation of Tensile and Bending Behavior of Aluminum based Hybrid Fiber Metal Laminates”. Procedia Materials Science, 5, 60-68, 2014.

Springback behavior of fiber metal laminate (FML) composites in press brake forming process

Yıl 2025, Cilt: 31 Sayı: 4, 580 - 587, 25.08.2025

Öz

The brake forming process is suitable for producing fiber metal laminate (FML) composites. However, the springback that occurs during braking causes severe problems in the final dimensional tolerance of the composite laminate. In this study, the springback behavior of fiber metal laminate (FML) composites in the v-shaped brake-forming process were experimentally investigated. In FML composites, 6061-T6 Aluminum was used on the outer surfaces, and carbon, glass, carbon/glass, and aramid fiber-reinforced epoxy composite plates were used in the inner layers. The effects of bending angle and die width parameters on springback behavior in the v-shaped brake-forming process were examined. Forming processes were carried out with bending angles of 140°, 150°, and 160° and two different mold widths: 16 and 20 mm. As a result of experiments, the highest springback was observed in the aluminum-carbon fiber-aluminum composite plate with 15.1° and the lowest springback was observed in the aluminum-glass/carbon fiber-aluminum composite plate with 0.4°. The highest spring-go was obtained in the aluminum-aramid fiber-aluminum composite plate with -1.7°, while the lowest spring-go was obtained in the aluminum-glass fiber-aluminum composite plate with -0.3°.

Kaynakça

  • [1] Cheng H, Zhang Z, Ren M, Jia H. “Experimental and Numerical Simulation Studies on V-Shaped Bending of Aluminum/CFRP Laminates”. Materials, 16(14), 4939, 2023.
  • [2] Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S. “Stamp forming of polypropylene based fibre-metal laminates: The effect of process variables on formability”. Journal of Materials Processing Technology, 172(2), 163-168, 2006.
  • [3] Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S. “The effect of process temperature on the formability of polypropylene based fibre-metal laminates”. Composites Part A: Applied Science and Manufacturing, 36(8), 1158-1166, 2005.
  • [4] Ding Z, Wang H, Luo J, Li N. “A review on forming technologies of fibre metal laminates”. International Journal of Lightweight Materials and Manufacture, 4(1), 110-126, 2021.
  • [5] Thomas LC, Kumar V, Gangwar A, Pisupati M, Gupta C, Panda SK. “Computational modelling and experimental techniques for fibre metal laminate structural analysis: a comprehensive review”. Archives of Computational Methods in Engineering, 31(1), 351-369, 2024.
  • [6] Pan L, Wang Y, Hu Y, Lv Y, Ali A, Roy N, Ma W, Tao J. “Investigation on the effect of configuration on tensile and flexural properties of aluminum/self-reinforced polypropylene fiber metal laminates”. Journal of Sandwich Structures & Materials, 22(6), 1770-1785, 2020.
  • [7] Fayzulla BJ, Eroglu M, Erkliğ A. “Effect of polyurethane matrix and steel fiber in combination with glass fiber or basalt fiber on the properties of hybrid composite laminates”. Materials Testing, 65(10), 1587–1598, 2023.
  • [8] Blala H, Lang L, Khan S, Li L, Siji S, Guelailia A, Slimane SA, Alexandrov S. “Forming challenges of small and complex fiber metal laminate parts in aerospace applications-a review”. International Journal of Advanced Manufacturing Technology, 126, 2509–2543, 2023.
  • [9] Keipour S, Gerdooei M. “Springback behavior of fiber metal laminates in hat-shaped draw bending process: experimental and numerical evaluation”. International Journal of Advanced Manufacturing Technology, 100(5–8), 1755-1765, 2019.
  • [10] Hwang JH, Jin CK, Lee MS, Choi SW, Kang CG. “Effect of surface roughness on the bonding strength and spring-back of a CFRP/CR980 hybrid composite”. Metals, 8(9), 1-12, 2018.
  • [11] Khan SH, Sharma AP. “Influence of metal/composite interface on the damage behavior and energy absorption mechanisms of FMLs against projectile impact”. Defence Technology, 18(3), 441-456, 2022.
  • [12] Guo Y, Chen Z, Li F, Xu X, Chen J, Ren Y, Wang Y. “Study on formability and failure modes of steel/CFRP based FMLs consisting of carbon fiber reinforced polymer prepreg and steel sheet”. Composite Structures, 281(11), 114980, 2022.
  • [13] Li H, Tian J, Fei W, Han Z, Tao G, Xu Y, Xu X, Tao J. “Spring-back and failure characteristics of roll bending of GLARE laminates”. Materials Research Express, 6(8), 0865b2, 2019.
  • [14] Hwang JH, Jin CK, Seo HY, Kang CG. “Effect of the number of CFRP prepregs and roughness at the bonding area on the spring-back and flexural strength of hybrid composites of CFRP combined with CR980”. Metals, 9(10), 1054, 2019.
  • [15] Aghchai AJ, Abolghasemi A, Moradkhani B, Tajik M. “Experimental, theoretical and numerical investigation of springback behavior of Al/composite/Al sandwich sheet”. Journal of Sandwich Structures and Materials, 19(6), 659-678, 2017.
  • [16] Graf A, Kräusel V, Rodio A, Lanzotti A. “Development of a springback prediction for a hybrid laminate with sensor functionality”. IOP Conference Series: Materials Science and Engineering, 1157(1), 012032, 2021.
  • [17] Zhang Y, Wan Y, Nakamura T, Takahashi J. “Effect of springback ratio on bending and impact property of carbon fiber reinforced thermoplastics sandwich structures”. 21st International Conference on Composite Materials, China, 20-25 January 2017.
  • [18] Jung WK, Chu WS, Ahn SH, Won MS. “Measurement and compensation of spring-back of a hybrid composite beam”. Journal of Composite Materials, 41(7), 851-864, 2007.
  • [19] Uriya Y, Ikeuch K, Yanagimoto J. “Cold and warm V-bending test for carbon-fiber-reinforced plastic sheet”. Procedia Engineering, 81(10), 1633-1638, 2014.
  • [20] McKown S, Cantwell WJ, Jones N. “Investigation of scaling effects in fiber-metal laminates”. Journal of Composite Materials, 42(9), 865–888, 2008.
  • [21] Khalili SMR, Daghigh V, Farsani RE. “Mechanical behavior of basalt fiber-reinforced and basalt fiber metal laminate composites under tensile and bending loads”. Journal of Reinforced Plastics and Composites, 30(8), 647-659, 2011.
  • [22] Safari M, Sousa RA, Fernandes F, Salamat-Talab M, Abdollahzadeh A. “Creep age forming of fiber metal laminates: Effects of process time and temperature and stacking sequence of core material”. Materials, 14(24), 2021.
  • [23] Ouled Ahmed Ben Ali R, Chatti S. “Springback Prediction of Sandwich Panel using Machine Learning Methods”. Mechanics of Advanced Composite Structures, 10(1), 11-20, 2023.
  • [24] Karabulut S, Esen İ. “Experimental investigation of the effect of process parameters on springback behavior of SCGADUB1180 high strength sheet”. Pamukkale University Journal of Engineering Sciences, 29(1), 68-75, 2023.
  • [25] Taşdemir V, Şen N, Seçgin Ö. “Investigation of the springback behavior of Erdemir 7136 sheet formed by rolling blank holder incremental sheet forming method”. Pamukkale University Journal of Engineering Sciences, 27(1), 90-95, 2021.
  • [26] Karaağaç İ, Uluer O. “ Experimental investigation of effect of process parameters on springback in v bending process”. Pamukkale University Journal of Engineering Sciences, 23(8), 990-993, 2017.
  • [27] Kim SY, Choi WJ, Park SY. “Spring-back characteristics of fiber metal laminate (GLARE) in brake forming process”. International Journal of Advanced Manufacturing Technology, 32(5-6), 445-451, 2007.
  • [28] Parsa MH, Al Ahkami SN, Ettehad M. “Experimental and finite element study on the spring back of double curved aluminum/polypropylene/aluminum sandwich sheet”. Materials and Design, 31(9), 4174-4183, 2010.
  • [29] Choi SW, Lee MS, Kang CG. “Effect of process parameters and laminating methods on spring-back in V-bending of CFRP/CR340 hybrid composites”. International Journal of Precision Engineering and Manufacturing, 17(3), 395-400, 2016.
  • [30] Yanagimoto J, Ikeuchi K. “Sheet forming process of carbon fiber reinforced plastics for lightweight parts”. CIRP Annals-Manufacturing Technology, 61(1), 247-250, 2012.
  • [31] Hahn M, Khalifa NB, Weddeling C, Shabaninejad A. “Springback behavior of carbon-fber-reinforced plastic laminates with metal cover layers in V-die bending”. Journal of Manufacturing Science and Engineering, 138(12), 121016, 2016.
  • [32] Wang J, Li J, Fu C, Zhang G, Zhu W, Li X, Yanagimoto J. “Study on influencing factors of bending springback for metal fiber laminates”. Composite Structures, 261, 113558, 2021.
  • [33] Huang Z, Sugiyama S, Yanagimoto J. “Hybrid joining process for carbon fiber reinforced thermosetting plastic and metallic thin sheets by chemical bonding and plastic deformation”. Journal of Materials Processing Technology, 213(11), 1864-1874, 2013.
  • [34] Isiktas A, Taskin V. “Springback Behavior of Fiber Metal Laminates with Carbon Fiber-Reinforced Core in V-Bending Process”. Arabian Journal for Science and Engineering, 45(11), 9357-9366, 2020.
  • [35] Kaçal A, Yıldırım F, Koyunbakan M. ,“Sac Malzeme Yüzey Pürüzlülüğünün Fiber-Metal Tabakalı Kompozitlerin Mekanik Özelliklerine Olan Etkisi”. El-Cezerî Journal of Science and Engineering, 8(3), 1215-1228, 2021.
  • [36] Lu Y, Li Y, Zhang Y, Dong, L. “Manufacture of Al/CF/PEEK curved beams by hot stamping forming process”. Materials and Manufacturing Processes, 37(14), 1597-1609, 2022.
  • [37] Rajkumar GR, Krishna M, Narasimhamurthy HN, Keshavamurthy YC, Nataraj JR. “Investigation of Tensile and Bending Behavior of Aluminum based Hybrid Fiber Metal Laminates”. Procedia Materials Science, 5, 60-68, 2014.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Ahmed Ozan Örnekci

Seçil Ekşi

Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 15 Ağustos 2024
Kabul Tarihi 5 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 4

Kaynak Göster

APA Örnekci, A. O., & Ekşi, S. (2025). Springback behavior of fiber metal laminate (FML) composites in press brake forming process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(4), 580-587.
AMA Örnekci AO, Ekşi S. Springback behavior of fiber metal laminate (FML) composites in press brake forming process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2025;31(4):580-587.
Chicago Örnekci, Ahmed Ozan, ve Seçil Ekşi. “Springback behavior of fiber metal laminate (FML) composites in press brake forming process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 4 (Ağustos 2025): 580-87.
EndNote Örnekci AO, Ekşi S (01 Ağustos 2025) Springback behavior of fiber metal laminate (FML) composites in press brake forming process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 4 580–587.
IEEE A. O. Örnekci ve S. Ekşi, “Springback behavior of fiber metal laminate (FML) composites in press brake forming process”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 4, ss. 580–587, 2025.
ISNAD Örnekci, Ahmed Ozan - Ekşi, Seçil. “Springback behavior of fiber metal laminate (FML) composites in press brake forming process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/4 (Ağustos2025), 580-587.
JAMA Örnekci AO, Ekşi S. Springback behavior of fiber metal laminate (FML) composites in press brake forming process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:580–587.
MLA Örnekci, Ahmed Ozan ve Seçil Ekşi. “Springback behavior of fiber metal laminate (FML) composites in press brake forming process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 4, 2025, ss. 580-7.
Vancouver Örnekci AO, Ekşi S. Springback behavior of fiber metal laminate (FML) composites in press brake forming process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(4):580-7.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.