Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of open-source software for thermo-economic analysis and optimization of the Organic Rankine Cycle

Yıl 2025, Cilt: 31 Sayı: 4, 588 - 600, 25.08.2025

Öz

Organic Rankine cycle (ORC) is a power cycle widely used in waste heat recovery and geothermal energy applications. It makes electricity generation possible, especially in low heat source applications such as geothermal energy. The design of ORC systems involves various engineering challenges. For this reason, calculations should be performed in a computer environment and should be easily repeatable and verifiable. Studies in this field require the development of engineering software. Since the development of engineering software requires time and financial resources, such tools developed by software companies are offered for commercial use. In the study, a simple educational Organic Rankine Cycle (ORC) calculator, which has a user graphical interface, whose source code is publicly available, is not dependent on any platform, and can be downloaded and distributed free of charge, was developed using the Python language. An error rate of less than 10% was achieved by running the developed software under the design conditions of the studies in the literature. The study consists of two main parts. In the first part, the open source program developed is mentioned. In the second part, a multi-purpose process optimization study was carried out using the Pymoo open-source library. LCOE(Levelized cost of energy)- Wnet (Power output) objective functions for R245fa fluid were examined according to the changes of Tsup (Superheating temperature) and Tpp,evap (Evaporator pinch point temperature difference) parameters. Optimum ΔTpp,evap values were determined when the weight function was 30%-70%, 50%-50% and 70%-30%. As a result of this study, the optimum points for 50% minimum LCOE-50% maximum Wnet were determined as 79.8 oC turbine inlet temperature and 6.84 oC ΔTpp,evap. Under these conditions, a net power of 2213 kW and an LCOE of 0.07806 $/kWh were achieved.

Kaynakça

  • [1] Hoang AT. “Waste heat recovery from diesel engines based on Organic Rankine Cycle”. Applied Energy, 231, 138-166, 2018.
  • [2] Tchanche B. Heat conversion into power using small scale organic Rankine cycles. PhD Thesis, Athens University, Athens, Greece, 2010.
  • [3] Yılmaz F. Güneş çanaklı organik rankine çevriminin Isparta şartlarında incelenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2013.
  • [4] Bao J, Zhao L. “A review of working fluid and expander selections for organic Rankine cycle”. Renewable and Sustainable Energy Reviews, 24(1), 325-342, 2013.
  • [5] Datla BV, Brasz JJ. “Comparing R1233zd And R245fa For LowTemperature ORC Applications”. 15th International Refrigeration and Air Conditioning Conference, Purdue, USA, 14-17 July 2014.
  • [6] Sánchez D, Muñoz De Escalona JM, Monje B, Chacartegui R, Sánchez T. “Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle”. Journal of Power Sources, 196(9), 4355-4363, 2021.
  • [7] Peng Y, Lin X, Liu J, Su W, Zhou N. “Machine learning prediction of ORC performance based on properties of working fluid”. Applied Thermal Engineering, 195, 117-184, 2021.
  • [8] Sun Q, Lin D, Khayatnezhad M, Taghavi M. “Investigation of phosphoric acid fuel cell, linear Fresnel solar reflector and Organic Rankine Cycle polygeneration energy system in different climatic conditions”. Process Safety and Environmental Protection, 147, 993-1008, 2021.
  • [9] Mousavi SA, Mehrpooya M, Delpisheh M. “Development and life cycle assessment of a novel solar-based cogeneration configuration comprised of diffusion-absorption refrigeration and organic Rankine cycle in remote areas”. Process Safety and Environmental Protection, 159, 1019–1038, 2022.
  • [10] Wang S, Liu C, Zhang S, Li Q, Huo E. “Multi-objective optimization and fluid selection of organic Rankine cycle (ORC) system based on economic-environmental-sustainable analysis”. Energy Conversion and Management, 254, 115238, 2022.
  • [11] Hekmatshoar M, Deymi DM, Gholizadeh M, Dadpour D, Delpisheh M. ”Thermoeconomic analysis and optimization of a geothermal-driven multi-generation system producing power, freshwater, and hydrogen”. Energy, 247, 123434, 2022.
  • [12] Khoshgoftar MH, Mousavi SA, Nourpour M, Said Z. “Energy, exergy, exergoeconomic, and exergoenvironmental analysis of an innovative solar-geothermal-gas driven polygeneration system for combined power, hydrogen, hot water, and freshwater production”. Sustainable Energy Technologies and Assessments, 51, 101861, 2022.
  • [13] Javed S, Tiwari AK. “Performance assessment of different Organic Rankine Cycle (ORC) configurations driven by solar energy”. Process Safety and Environmental Protection, 171, 655–666, 2023.
  • [14] Zhou J, Chu YT, Ren J, Shen W, He C. “Integrating machine learning and mathematical programming for efficient optimization of operating conditions in organic Rankine cycle (ORC) based combined systems”. Energy, 281, 128218, 2023.
  • [15] Lu X, Du B, Zhu W, Yang Y, Xie C, Tu Z, Zhao B, Zhang L, Wang J, Yang Z. “Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power.” Energy, 290, 130163, 2023.
  • [16] Njock JP, Ngangué MN, Sosso OT, Nzengwa R. “Highlighting the effect of the lower operating limit of the condenser on ORC working fluids selection”. Results in Engineering, 19, 101369, 2023.
  • [17] Rodriguez DA, Becerra JA, Chacartegui R. “Adaptation of residential solar systems for domestic hot water (DHW) to hybrid organic Rankine Cycle (ORC) distributed generation”. Energy, 263, 125901, 2023.
  • [18] Feng YQ, Zhang Q, Xu KJ, Wang CM, He ZX, Hung TC. “Parametric analysis and thermal-economical optimization of a parallel dual pressure evaporation and two stage regenerative organic Rankine cycle using mixture working fluids”. Energy, 263, 125670, 2023.
  • [19] Zhang X, Zhang Z, Wang G. “Thermodynamic and economic investigation of a novel combined cycle in coal-fired power plant with CO2 capture via Ca-looping”. Energy, 263, 125795, 2023.
  • [20] Wang L, Xia L, Li C, Tian Y, Teng J, Sun X, Xiang S. “Exergy, economic, and exergoenvironmental analyses of new combined heat and power process based on mechanism analysis of working fluid screening”. Energy, 262, 125308, 2023.
  • [21] Karabuga A, Yakut MZ, Utlu Z. “Assessment of thermodynamic performance of a novelty solar-ORC configuration based hydrogen production: An experimental study”. International Journal of Hydrogen Energy, 48(99), 39154–39168, 2023.
  • [22] Xing C. “Machine learning-based multi-objective optimization and thermodynamic evaluation of organic Rankine cycle (ORC) system for vehicle engine under road condition”. Applied Thermal Engineering, 231, 120904, 2023.
  • [23] Feng YQ, Zhang Q, Xu KJ, Wang CM, He ZX, Hung TC. “Operation characteristics and performance prediction of a 3 kW organic Rankine cycle (ORC) with automatic control system based on machine learning methodology”. Energy, 263, 125857, 2023.
  • [24] Chitgar N, Hemmati A, Sadrzadeh M. “A comparative performance analysis, working fluid selection, and machine learning optimization of ORC systems driven by geothermal energy”. Energy Conversion and Management, 286, 117072, 2023.
  • [25] Hajialigol N, Fattahi A, Karimi N, Jamali M, Keighobadi S. “Hybridized power-hydrogen generation using various configurations of Brayton-organic flash Rankine cycles fed by a sustainable fuel: Exergy and exergoeconomic analyses with ANN prediction”. Energy, 290, 130166, 2023.
  • [26] Ata S, Kahraman A, Şahin R. “Çok değişkenli optimizasyon ile organik Rankine çevrim verimini etkileyen parametrelerin hassasiyet ve katkı oranlarının tespiti”. Pamukkale University Journal of Engineering Sciences, 29(1), 94–103, 2023.
  • [27] Atiz A, Karakilcik M. “Adana iklim koşullarında Organik Rankine Çevrimi ile bütünleşik düzlem-plakalı ve vakum tüplü kolektörlerin ısıl verimlerinin karşılaştırılması”. Pamukkale University Journal of Engineering Sciences, 26(1), 106–112, 2020.
  • [28] Bilgiç M. Development of Thermofluidic Design Tool for Organic Ranknie Cycle Axial and Radial İnflow. PhD Thesis, Middle East Technical University, Ankara, Türkiye, 2023.
  • [29] Aksoy M. Yeni-Nesil ve Zeotropik Akışkanlar Kullanılarak Tasarlanmış Rejeneratif Reküperatörlü Organik Rankine Çevriminin Performansının Belirlenmesi. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi, Konya, Türkiye, 2023.
  • [30] Bayraktar B. Mikro Skala Organik Rankine Çevrimi Sistemi Tasarımı, Üretimi ve Testi. Yüksek Lisans Tezi, Boğaziçi Üniversitesi, İstanbul, Türkiye, 2022.
  • [31] Karadaş M. Designing of an Organic Rankine Cycle Power Plant by Using Low Enthalpy Geothermal Resources. PhD Thesis, Aydın Adnan Menderes University, Aydın, Türkiye, 2022.
  • [32] Kaplan A. Farklı Soğutucu Akışkanlar Kullanılarak İki Aşamalı Organik Rankine Çevriminin Termodinamik ve Eksergoekonomik Analizi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye, 2022.
  • [33] Konur O. Applicatıon of Organic Rankine Cycle (Orc) System To Marine Vessels. PhD Thesis, Dokuz Eylül University, İzmir, Türkiye, 2021.
  • [34] Zhang H, Liu X, Hao R, Ba, X, Liu C, Liu Y, Duan C, Qiao M, Qin J. “Thermodynamic and thermoeconomic analyses of the energy segmented stepped utilization of medium- and low-temperature steam based on a dual-stage organic Rankine cycle”. Applied Thermal Engineering, 219, 119488 2023.
  • [35] Maxwell C. “Chemical Engineering Plant Cost Index (CEPCI)”. https://toweringskills.com/financial-analysis/cost-indices/ (01.06 2023).
  • [36] Sohrabi A, Behbahaninia A, Sayadi S. “Thermodynamic optimization and comparative economic analysis of four organic Rankine cycle configurations with a zeotropic mixture”. Energy Conversion and Management, 250, 114872, 2021.
  • [37] Bejan A, Tsatsaronis G, Moran MJ. Wiley Editing Services. Economic Analysis. Editors: Wiley Editing Services. Thermal Design and Optimization. 348-420, Danvers, ABD,Wiley MA, 1996.
  • [38] Galloni E, Fontana G, Staccone S. “Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid”. Energy, 90, 768-775, 2015.
  • [39] Lukawski MZ, Ronald DP, Jefferson WT. “Molecularroperty methods for assessing efficiency of organic Rankine cycles”. Energy, 142, 108-120, 2018.
  • [40] Li J, Liu Q, Ge Z, Duan Y, Yang Z. “Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100–200 °C heat sources”. Energy Conversion and Management, 149, 140-154, 2017.
  • [41] Zhar R, Allouhi A, Jamil A, Lahrech K. “A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery”. Case Studies in Thermal Engineering, 28, 101608, 2021.
  • [42] Aksar M, Yağlı H, Koç Y, Koç A, Sohani A, Yumrutaş R. “Why Kalina (Ammonia-Water) cycle rather than steam Rankine cycle and pure ammonia cycle: A comparative and comprehensive case study for a cogeneration system”. Energy Conversion and Management, 265, 115739, 2022.
  • [43] Jankowski M, Borsukiewicz A, Szopik-Depczynska K, Ioppolo G. “Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach”. Journal of Cleaner Production, 217, 798-807, 2019.
  • [44] Scagnolatto G, Cabezas-Gomez L, Tibiriça CB. “Analytical model for thermal efficiency of organic Rankine cycles, considering superheating, heat recovery, pump and expander efficiencies”. Energy Conversion and Management, 246, 114628, 2021.
  • [45] Jubori AA, Daabo A, Al-Dadah RK, Mahmoud S, Ennil AB. “Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle”. Energy Conversion and Management, 130, 141-155, 2016.
  • [46] Bell IH, Wronski J, Quoilin S, Lemort V. “Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop”. Industrial and Engineering Chemistry Research, 53(6), 2498–2508, 2014.
  • [47] Calm JM, Hourahan GC. “Refrigerant Data Update”. HPAC Engineering, 79(1), 50-64, 2007.
  • [48] f-Chart Software “Mastering EES”. https://fchart.com/assets/downloads/Mastering-EES-TOC.pdf (01.06 2023).

Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi

Yıl 2025, Cilt: 31 Sayı: 4, 588 - 600, 25.08.2025

Öz

Organik Rankine çevrimi (ORC), atık ısı geri kazanımı ve jeotermal enerji uygulamalarında yaygın kullanılan bir güç çevrimidir. Özellikle jeotermal enerji gibi düşük ısı kaynaklı uygulamalarda elektrik üretimini mümkün kılmaktadır. ORC sistemlerinin tasarımı çeşitli mühendislik zorlukları içermektedir. Bu sebeple hesaplamalar bilgisayar ortamında gerçekleştirilmeli, kolaylıkla tekrarlanabilir ve teyit edilebilir olmalıdır. Bu alandaki çalışmalar mühendislik yazılımlarının geliştirilmesine ihtiyaç duymaktadır. Mühendislik yazılımlarının geliştirilmesi zaman ve maddi kaynak gerektirdiği için yazılım firmaları tarafından geliştirilen bu tür araçlar ticari olarak kullanıma sunulmaktadır. Çalışmada, kullanıcı grafik arayüzüne sahip, kaynak kodu herkesin kullanımına açık olan, herhangi bir platforma bağlı olmayan ve ücretsiz indirilip dağıtılabilen, eğitim amaçlı bir basit Organik Rankine çevrimi (ORC) hesaplayıcısı Python dili kullanılarak geliştirilmiştir. Geliştirilen yazılımın literatürdeki çalışmaların tasarım şartlarında çalıştırılmasıyla %10’un altında bir hata oranına ulaşılmıştır. Çalışma iki ana bölümden oluşmaktadır. İlk bölümde geliştirilen açık kaynaklı programdan bahsedilmiş olup. İkinci bölümde ise Pymoo açık-kaynaklı kütüphanesi kullanılarak çok amaçlı proses optimizasyonu çalışması yürütülmüştür. R245fa akışkanı için LCOE (Seviyelendirilmiş enerji maliyeti)- Wnet (Güç çıktısı) amaç fonksiyonları Tsup(Aşırı kızdırma sıcaklığı) ve ΔTpp,evap (Evaporatör pinch noktası sıcaklık farkı) parametrelerinin değişimine göre incelenmiştir. Ağırlık fonksiyonunun %30-%70; %50-%50; %70-%30 olması durumunda optimum ΔTpp,evap değerleri tespit edilmiştir. Bu çalışma sonucunda %50 minimum LCOE-%50 maksimum Wnet için optimum noktalar 79.8 oC türbin giriş sıcaklığı ve 6.84 oC ΔTpp, evap olarak tespit edilmiştir. Bu şartlarda 2213 kW net güce ulaşırken 0.07806 $/kWh LCOE değerine ulaşılmıştır.

Kaynakça

  • [1] Hoang AT. “Waste heat recovery from diesel engines based on Organic Rankine Cycle”. Applied Energy, 231, 138-166, 2018.
  • [2] Tchanche B. Heat conversion into power using small scale organic Rankine cycles. PhD Thesis, Athens University, Athens, Greece, 2010.
  • [3] Yılmaz F. Güneş çanaklı organik rankine çevriminin Isparta şartlarında incelenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2013.
  • [4] Bao J, Zhao L. “A review of working fluid and expander selections for organic Rankine cycle”. Renewable and Sustainable Energy Reviews, 24(1), 325-342, 2013.
  • [5] Datla BV, Brasz JJ. “Comparing R1233zd And R245fa For LowTemperature ORC Applications”. 15th International Refrigeration and Air Conditioning Conference, Purdue, USA, 14-17 July 2014.
  • [6] Sánchez D, Muñoz De Escalona JM, Monje B, Chacartegui R, Sánchez T. “Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle”. Journal of Power Sources, 196(9), 4355-4363, 2021.
  • [7] Peng Y, Lin X, Liu J, Su W, Zhou N. “Machine learning prediction of ORC performance based on properties of working fluid”. Applied Thermal Engineering, 195, 117-184, 2021.
  • [8] Sun Q, Lin D, Khayatnezhad M, Taghavi M. “Investigation of phosphoric acid fuel cell, linear Fresnel solar reflector and Organic Rankine Cycle polygeneration energy system in different climatic conditions”. Process Safety and Environmental Protection, 147, 993-1008, 2021.
  • [9] Mousavi SA, Mehrpooya M, Delpisheh M. “Development and life cycle assessment of a novel solar-based cogeneration configuration comprised of diffusion-absorption refrigeration and organic Rankine cycle in remote areas”. Process Safety and Environmental Protection, 159, 1019–1038, 2022.
  • [10] Wang S, Liu C, Zhang S, Li Q, Huo E. “Multi-objective optimization and fluid selection of organic Rankine cycle (ORC) system based on economic-environmental-sustainable analysis”. Energy Conversion and Management, 254, 115238, 2022.
  • [11] Hekmatshoar M, Deymi DM, Gholizadeh M, Dadpour D, Delpisheh M. ”Thermoeconomic analysis and optimization of a geothermal-driven multi-generation system producing power, freshwater, and hydrogen”. Energy, 247, 123434, 2022.
  • [12] Khoshgoftar MH, Mousavi SA, Nourpour M, Said Z. “Energy, exergy, exergoeconomic, and exergoenvironmental analysis of an innovative solar-geothermal-gas driven polygeneration system for combined power, hydrogen, hot water, and freshwater production”. Sustainable Energy Technologies and Assessments, 51, 101861, 2022.
  • [13] Javed S, Tiwari AK. “Performance assessment of different Organic Rankine Cycle (ORC) configurations driven by solar energy”. Process Safety and Environmental Protection, 171, 655–666, 2023.
  • [14] Zhou J, Chu YT, Ren J, Shen W, He C. “Integrating machine learning and mathematical programming for efficient optimization of operating conditions in organic Rankine cycle (ORC) based combined systems”. Energy, 281, 128218, 2023.
  • [15] Lu X, Du B, Zhu W, Yang Y, Xie C, Tu Z, Zhao B, Zhang L, Wang J, Yang Z. “Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power.” Energy, 290, 130163, 2023.
  • [16] Njock JP, Ngangué MN, Sosso OT, Nzengwa R. “Highlighting the effect of the lower operating limit of the condenser on ORC working fluids selection”. Results in Engineering, 19, 101369, 2023.
  • [17] Rodriguez DA, Becerra JA, Chacartegui R. “Adaptation of residential solar systems for domestic hot water (DHW) to hybrid organic Rankine Cycle (ORC) distributed generation”. Energy, 263, 125901, 2023.
  • [18] Feng YQ, Zhang Q, Xu KJ, Wang CM, He ZX, Hung TC. “Parametric analysis and thermal-economical optimization of a parallel dual pressure evaporation and two stage regenerative organic Rankine cycle using mixture working fluids”. Energy, 263, 125670, 2023.
  • [19] Zhang X, Zhang Z, Wang G. “Thermodynamic and economic investigation of a novel combined cycle in coal-fired power plant with CO2 capture via Ca-looping”. Energy, 263, 125795, 2023.
  • [20] Wang L, Xia L, Li C, Tian Y, Teng J, Sun X, Xiang S. “Exergy, economic, and exergoenvironmental analyses of new combined heat and power process based on mechanism analysis of working fluid screening”. Energy, 262, 125308, 2023.
  • [21] Karabuga A, Yakut MZ, Utlu Z. “Assessment of thermodynamic performance of a novelty solar-ORC configuration based hydrogen production: An experimental study”. International Journal of Hydrogen Energy, 48(99), 39154–39168, 2023.
  • [22] Xing C. “Machine learning-based multi-objective optimization and thermodynamic evaluation of organic Rankine cycle (ORC) system for vehicle engine under road condition”. Applied Thermal Engineering, 231, 120904, 2023.
  • [23] Feng YQ, Zhang Q, Xu KJ, Wang CM, He ZX, Hung TC. “Operation characteristics and performance prediction of a 3 kW organic Rankine cycle (ORC) with automatic control system based on machine learning methodology”. Energy, 263, 125857, 2023.
  • [24] Chitgar N, Hemmati A, Sadrzadeh M. “A comparative performance analysis, working fluid selection, and machine learning optimization of ORC systems driven by geothermal energy”. Energy Conversion and Management, 286, 117072, 2023.
  • [25] Hajialigol N, Fattahi A, Karimi N, Jamali M, Keighobadi S. “Hybridized power-hydrogen generation using various configurations of Brayton-organic flash Rankine cycles fed by a sustainable fuel: Exergy and exergoeconomic analyses with ANN prediction”. Energy, 290, 130166, 2023.
  • [26] Ata S, Kahraman A, Şahin R. “Çok değişkenli optimizasyon ile organik Rankine çevrim verimini etkileyen parametrelerin hassasiyet ve katkı oranlarının tespiti”. Pamukkale University Journal of Engineering Sciences, 29(1), 94–103, 2023.
  • [27] Atiz A, Karakilcik M. “Adana iklim koşullarında Organik Rankine Çevrimi ile bütünleşik düzlem-plakalı ve vakum tüplü kolektörlerin ısıl verimlerinin karşılaştırılması”. Pamukkale University Journal of Engineering Sciences, 26(1), 106–112, 2020.
  • [28] Bilgiç M. Development of Thermofluidic Design Tool for Organic Ranknie Cycle Axial and Radial İnflow. PhD Thesis, Middle East Technical University, Ankara, Türkiye, 2023.
  • [29] Aksoy M. Yeni-Nesil ve Zeotropik Akışkanlar Kullanılarak Tasarlanmış Rejeneratif Reküperatörlü Organik Rankine Çevriminin Performansının Belirlenmesi. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi, Konya, Türkiye, 2023.
  • [30] Bayraktar B. Mikro Skala Organik Rankine Çevrimi Sistemi Tasarımı, Üretimi ve Testi. Yüksek Lisans Tezi, Boğaziçi Üniversitesi, İstanbul, Türkiye, 2022.
  • [31] Karadaş M. Designing of an Organic Rankine Cycle Power Plant by Using Low Enthalpy Geothermal Resources. PhD Thesis, Aydın Adnan Menderes University, Aydın, Türkiye, 2022.
  • [32] Kaplan A. Farklı Soğutucu Akışkanlar Kullanılarak İki Aşamalı Organik Rankine Çevriminin Termodinamik ve Eksergoekonomik Analizi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye, 2022.
  • [33] Konur O. Applicatıon of Organic Rankine Cycle (Orc) System To Marine Vessels. PhD Thesis, Dokuz Eylül University, İzmir, Türkiye, 2021.
  • [34] Zhang H, Liu X, Hao R, Ba, X, Liu C, Liu Y, Duan C, Qiao M, Qin J. “Thermodynamic and thermoeconomic analyses of the energy segmented stepped utilization of medium- and low-temperature steam based on a dual-stage organic Rankine cycle”. Applied Thermal Engineering, 219, 119488 2023.
  • [35] Maxwell C. “Chemical Engineering Plant Cost Index (CEPCI)”. https://toweringskills.com/financial-analysis/cost-indices/ (01.06 2023).
  • [36] Sohrabi A, Behbahaninia A, Sayadi S. “Thermodynamic optimization and comparative economic analysis of four organic Rankine cycle configurations with a zeotropic mixture”. Energy Conversion and Management, 250, 114872, 2021.
  • [37] Bejan A, Tsatsaronis G, Moran MJ. Wiley Editing Services. Economic Analysis. Editors: Wiley Editing Services. Thermal Design and Optimization. 348-420, Danvers, ABD,Wiley MA, 1996.
  • [38] Galloni E, Fontana G, Staccone S. “Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid”. Energy, 90, 768-775, 2015.
  • [39] Lukawski MZ, Ronald DP, Jefferson WT. “Molecularroperty methods for assessing efficiency of organic Rankine cycles”. Energy, 142, 108-120, 2018.
  • [40] Li J, Liu Q, Ge Z, Duan Y, Yang Z. “Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100–200 °C heat sources”. Energy Conversion and Management, 149, 140-154, 2017.
  • [41] Zhar R, Allouhi A, Jamil A, Lahrech K. “A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery”. Case Studies in Thermal Engineering, 28, 101608, 2021.
  • [42] Aksar M, Yağlı H, Koç Y, Koç A, Sohani A, Yumrutaş R. “Why Kalina (Ammonia-Water) cycle rather than steam Rankine cycle and pure ammonia cycle: A comparative and comprehensive case study for a cogeneration system”. Energy Conversion and Management, 265, 115739, 2022.
  • [43] Jankowski M, Borsukiewicz A, Szopik-Depczynska K, Ioppolo G. “Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach”. Journal of Cleaner Production, 217, 798-807, 2019.
  • [44] Scagnolatto G, Cabezas-Gomez L, Tibiriça CB. “Analytical model for thermal efficiency of organic Rankine cycles, considering superheating, heat recovery, pump and expander efficiencies”. Energy Conversion and Management, 246, 114628, 2021.
  • [45] Jubori AA, Daabo A, Al-Dadah RK, Mahmoud S, Ennil AB. “Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle”. Energy Conversion and Management, 130, 141-155, 2016.
  • [46] Bell IH, Wronski J, Quoilin S, Lemort V. “Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop”. Industrial and Engineering Chemistry Research, 53(6), 2498–2508, 2014.
  • [47] Calm JM, Hourahan GC. “Refrigerant Data Update”. HPAC Engineering, 79(1), 50-64, 2007.
  • [48] f-Chart Software “Mastering EES”. https://fchart.com/assets/downloads/Mastering-EES-TOC.pdf (01.06 2023).
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Mehmet Berk Azdural

Ali Kahraman

Sadık Ata

Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 21 Şubat 2024
Kabul Tarihi 21 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 4

Kaynak Göster

APA Azdural, M. B., Kahraman, A., & Ata, S. (2025). Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(4), 588-600.
AMA Azdural MB, Kahraman A, Ata S. Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2025;31(4):588-600.
Chicago Azdural, Mehmet Berk, Ali Kahraman, ve Sadık Ata. “Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 4 (Ağustos 2025): 588-600.
EndNote Azdural MB, Kahraman A, Ata S (01 Ağustos 2025) Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 4 588–600.
IEEE M. B. Azdural, A. Kahraman, ve S. Ata, “Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 4, ss. 588–600, 2025.
ISNAD Azdural, Mehmet Berk vd. “Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/4 (Ağustos2025), 588-600.
JAMA Azdural MB, Kahraman A, Ata S. Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:588–600.
MLA Azdural, Mehmet Berk vd. “Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 4, 2025, ss. 588-00.
Vancouver Azdural MB, Kahraman A, Ata S. Organik rankine çevriminin termo-ekonomik analizi ve optimizasyonu için açık kaynak kodlu yazılım geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(4):588-600.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.