Research Article
BibTex RIS Cite

Effects of alkaline treated and untreated halloysite on the properties of poly(butylene succinate)/halloysite composite films

Year 2025, Volume: 31 Issue: 4, 687 - 693, 25.08.2025

Abstract

Today, the growing use of disposable plastics, primarily obtained from synthetic polymers, requires the development of biodegradable and biobased alternatives. Here, efforts were made to improve the properties of poly (butylene succinate) (PBS), which is bio-based and biodegradable. Halloysite nanotubes (HNTs) was incorporated to improve the mechanical and thermal properties of PBS. The effects of alkaline treatment on the properties of PBS/HNT composite films were evaluated. The raw HNT powder was treated with NaOH, yielding alkaline HNT (HNT-A), which was compared with untreated HNT. Alkalization resulted in an increase in the diameters of HNTs and enhancement of thermal properties with HNT-A resulting 82% residue at 600°C. Subsequently, PBS composites reinforced with both HNT and HNT-A were fabricated through melt blending and compression molding techniques. The inclusion of HNT and HNT-A increased tensile strength of neat PBS from 13.8 MPa to around 15.9-17.7 MPa. However, alkalization had no considerable effects on the mechanical characteristic. The thermal stability changed with HNT-A reinforced films showing a residue of 5.2% at 600 °C, compared to 4.2% for untreated HNT films and 1.3% for neat PBS. Also, HNT-A reinforced films exhibited higher crystallinity (up to 51.3%) compared to untreated HNT films (49.4%), indicating that HNT-A acts as a nucleating agent. This paper presents valuable insights into the development of environmentally friendly materials for food packaging and highlights the potential of alkali-treated HNTs to enhance the properties of PBS as an alternative to conventional plastics, paving the way for researchers to explore further applications such as active packaging.

References

  • [1] Atta OM, Manan S, Shahzad A, Ul-Islam M, Ullah MW, Yang G. "Biobased materials for active food packaging: A review". Food Hydrocolloids, 125, 107419, 2022.
  • [2] Platnieks O, Gaidukovs S, Kumar Thakur V, Barkane A, Beluns S. "Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities". European Polymer Journal, 161, 110855, 2021.
  • [3] Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, et al. "A review on properties and application of bio‐based poly(Butylene succinate)". Polymers, 13(9), 1–28, 2021.
  • [4] Wu F, Misra M, Mohanty AK. "Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging". Progress in Polymer Science, 117, 101395, 2021.
  • [5] Cosquer R, Pruvost S, Gouanvé F. "Improvement of barrier properties of biodegradable polybutylene succinate/graphene nanoplatelets nanocomposites prepared by melt process". Membranes, 11(2), 1–25, 2021.
  • [6] PTT MCC Biochem Co. Ltd. “Introduction to BioPBSTM”. Bangkok, Thailand, 1, 2022.
  • [7] Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P. "A brief review of Poly (Butylene Succinate) (PBS) and its main and applications". Polymer, 14, 844, 2022.
  • [8] Threepopnatkul P, Charoendee N, Wiriyamontree N, Phodaeng A. "Effect of essential oil on properties of PBAT/PBS for bio-packaging films". Journal of Physics: Conference Series, 2175, 012023, 2022.
  • [9] Tarnlert W, Tansin K, Jariyasakoolroj P. "Poultry eggshell effects on microporous poly(lactic acid)-based film fabrication for active compound-releasing sachets". Polymer Bulletin, 79(2), 1217–1238, 2022.
  • [10] Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S. "Morphological, structural, thermal, permeability, and antimicrobial activity of PBS and PBS/TPS films ıncorporated with biomaster-silver for food packaging application". Polymers, 13(3), 391, 2021.
  • [11] Raffaela de A, Crocitti A, de Carvalho LH, Carroccio SC, Cerruti P, Santagata G. "Properties of biodegradable films based on poly(Butylene succinate) (pbs) and poly(butylene adipate-co-terephthalate) (pbat) blends". Polymers, 12(10), 1–17, 2020.
  • [12] Nuamduang P, Auras R, Winotapun C, Hararak B, Wanmolee W, Leelaphiwat P. "Enhanced antifungal properties of poly(butylene succinate) film with lignin nanoparticles and trans-cinnamaldehyde for mango packaging". International Journal of Biological Macromolecules, 267, 131185, 2024.
  • [13] Wattanawong N, Aht-Ong D. "Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films". Polymer Degradation and Stability, 183, 109459, 2021.
  • [14] Mallardo S, De Vito V, Malinconico M, Volpe MG, Santagata G, Di Lorenzo ML. "Poly(butylene succinate)-based composites containing β-cyclodextrin/d-limonene inclusion complex". European Polymer Journal, 79, 82–96, 2016.
  • [15] Mohamad N, Mazlan MM, Tawakkal ISMA, Talib RA, Kian LK, Jawaid M. "Characterization of active polybutylene succinate films filled essential oils for food packaging application". Journal of Polymers and the Environment, 30(2), 585–596, 2022.
  • [16] Chaochanchaikul K, Sakulkhaemaruethai C. "Effect of nanoclay and nano-calcium carbonate content on the properties of polybutylene succinate/nanoparticle composites". Journal of Plastic Film and Sheeting, 39(2), 190–210, 2023.
  • [17] Ray SS, Okamoto K, Okamoto M. "Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite". Journal of Applied Polymer Science, 102(1), 777–785, 2006.
  • [18] Deshmukh RK, Kumar L, Gaikwad KK. "Halloysite nanotubes for food packaging application: A review". Applied Clay Science, 234, e106856, 2023.
  • [19] Çetin ME, Tatar AC, Demir O, Önal G, Avcı A. "Effects of cryogenic and warm temperatures on quasi-static penetration resistance of carbon-aramid hybrid nanocomposites reinforced using halloysite nanotubes". Mechanics of Materials, 155, 103780, 2021.
  • [20] Çetin ME, Baştosun Y, Tatar AC, Cetin MH, Demir O, Önal G, et al. "The effect of halloysite nanotube modification on wear behavior of carbon-aramid fiber reinforced hybrid nanocomposites". Polymer Composites, 43(1), 624–637, 2022.
  • [21] Thomas SP. "Polyvinyl chloride (PVC)/ Halloysite (HNT) nanocomposites: Thermal stability and structural characterization studies". Journal of King Saud University - Engineering Sciences, 36(2), 98–104, 2024.
  • [22] Risyon NP, Othman SH, Basha RK, Talib RA. "Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging". Food Packaging and Shelf Life, 23, 100450, 2020.
  • [23] Wu W, Cao X, Luo J, He G, Zhang Y. "Morphology, thermal, and mechanical properties of poly(butylene succinate) reinforced with halloysite nanotube". Polymer Composites, 35(5), 847–855, 2014.
  • [24] Liu HY, Chen L, Li W, Wang KW. "Effect of halloysite nanotube loading on structure, mechanical and thermal properties of poly (l-lactic acid)/poly-(butylene succinate) blend". IOP Conference Series: Materials Science and Engineering, 634(1), 012012, 2019.
  • [25] Wang Y, Liu C, Shi X, Liang J, Jia Z, Shi G. "Synergistic effect of halloysite nanotubes on flame resistance of intumescent flame retardant poly(butylene succinate) composites". Polymer Composites, 40(1), 202–209, 2019.
  • [26] Boonsiriwit A, Xiao Y, Joung J, Kim M, Singh S, Lee YS. "Alkaline halloysite nanotubes/low density polyethylene nanocomposite films with increased ethylene absorption capacity: Applications in cherry tomato packaging". Food Packaging and Shelf Life, 25, 100533, 2020.
  • [27] Dumazert L, Rasselet D, Pang B, Gallard B, Kennouche S, Lopez-Cuesta JM. "Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives". Polymers for Advanced Technologies, 29(1), 69–83, 2018.
  • [28] Boonprasith P, Wootthikanokkhan J, Nimitsiriwat N. "Mechanical, thermal, and barrier properties of nanocomposites based on poly(butylene succinate)/thermoplastic starch blends containing different types of clay". Journal of Applied Polymer Science, 130, 1114–1123, 2013.
  • [29] Gaikwad KK, Singh S, Lee YS. "High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications". Environmental Chemistry Letters, 16(3), 1055-1062, 2018.
  • [30] Boro U, Priyadarsini A, Moholkar VS. "Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications". International Journal of Biological Macromolecules, 216, 927–39, 2022.
  • [31] Wang Q, Zhang J, Wang A. "Alkali activation of halloysite for adsorption and release of ofloxacin". Applied Surface Science, 287, 54–61, 2013.
  • [32] Yin Y, Yang J, Meng L. "Preparation of poly(butylene succinate) vitrimer with thermal shape stability via transesterification reaction". Journal of Applied Polymer Science, 138(39), 1–10, 2021.
  • [33] Yuan P, Tan D, Annabi-Bergaya F. "Properties and applications of halloysite nanotubes: Recent research advances and future prospects". Applied Clay Science, 112–113, 75–93, 2015.
  • [34] Ucpinar Durmaz B, Ugur Nigiz F, Aytac A. "Active packaging films based on poly(butylene succinate) films reinforced with alkaline halloysite nanotubes: Production, properties, and fruit packaging applications". Applied Clay Science, 259, 107517, 2024.
  • [35] Ayu R, Khalina A, Harmaen A, Zaman K, Jawaid M, Lee C. "Effect of Modified Tapioca Starch on Mechanical, Thermal, and Morphological Properties of PBS Blends for Food Packaging". Polymers, 10(11), 1187, 2018.
  • [36] Yao SF, Chen XT, Ye HM. "Investigation of Structure and Crystallization Behavior of Poly(butylene succinate) by Fourier Transform Infrared Spectroscopy". Journal of Physical Chemistry B, 121(40), 9476–9485, 2017.
  • [37] Zhang J, Hirschberg V, Pollard M, Wilhelm M, Rodrigue D. "Effect of mechanical recycling on the rheological and mechanical properties of bio-based and bio-degradable polybutylene succinate". Resources, Conservation and Recycling, 209, 107741, 2024.
  • [38] Basbasan AJ, Hararak B, Winotapun C, Wanmolee W, Chinsirikul W, Leelaphiwat P, Chonhenchob V, Boonruang K. "Lignin nanoparticles for enhancing physicochemical and antimicrobial properties of polybutylene succinate/thymol composite film for active packaging". Polymers, 15(4), 989, 2023.
  • [39] Siraj N, Hashmi SAR, Verma S. "Thermo-mechanical and morphological studies of Hal-reinforced PEEK". Applied Clay Science, 245, 107153, 2023.
  • [40] Carli LN, Crespo JS, Mauler RS. "PHBV nanocomposites based on organomodified montmorillonite and halloysite: The effect of clay type on the morphology and thermal and mechanical properties". Composites Part A: Applied Science and Manufacturing, 42(11), 1601–1608, 2011.

Alkali işlem görmüş ve görmemiş halloysitin poli(bütilen süksinat)/halloysit kompozit filmlerin özellikleri üzerindeki etkileri

Year 2025, Volume: 31 Issue: 4, 687 - 693, 25.08.2025

Abstract

Günümüzde sentetik polimerlerden elde edilen tek kullanımlık plastiklerin kullanımındaki artış ile birlikte biyolojik olarak parçalanabilen ve biyo-bazlı alternatiflerin geliştirilmesi gereksinimi doğmuştur. Bu çalışmada, biyo-bazlı ve biyobozunur olan poli(bütilen süksinat) (PBS)'nin özelliklerini geliştirmeye odaklanılmıştır. Boru şeklinde bir kil minerali olan Halloysit nanotüpler (HNT'ler) PBS'nin mekanik ve termal özelliklerini iyileştirmek için kullanılmışlardır. Alkalizasyonun PBS/HNT kompozit filmlerinin özellikleri üzerindeki etkileri değerlendirilmiştir. Ham HNT tozu NaOH ile muamele edilerek alkali HNT (HNT-A) elde edilmiş ve daha sonra muamele edilmemiş HNT ile karşılaştırılmıştır. Alkalizasyon HNT'lerin çaplarında bir artışa ve termal özelliklerinin gelişmesine yol açmıştır. HNT-A’nın 600 ° C’deki kül miktarı %82 olarak belirlenmiştir. Daha sonra hem HNT hem de HNT-A takviyeli PBS kompozitleri eriyik harmanlama ve basınçlı kalıplama teknikleriyle üretilmiştir. Hem HNT hem de HNT-A'nın eklenmesi PBS'nin 13.8 MPa olan çekme dayanımını 15.9 ila 17.7 aralığına artırmıştır. Ancak alkalizasyonun mekanik özellikler üzerinde belirgin bir etkisi gözlenmemiştir. TGA ile HNT-A takviyeli filmlerde 600 °C'de %5.2 kalıntı görülürken, işlenmemiş HNT filmlerinde bu değer %4.2 ve saf PBS'de ise %1.3 olarak bulunmuştur. Ayrıca HNT-A takviyeli filmler, işlenmemiş HNT filmlerine (49.4%) göre daha yüksek kristalinite (51.3%'e kadar) sergilemiştir; bu da HNT-A'nın çekirdeklendirici ajan olarak davrandığını göstermiştir. Bu çalışma, ambalaj uygulamaları için çevre dostu malzemelerin geliştirilmesine ilişkin değerli bilgiler sunarak, alkali ile işlenmiş HNT'lerin, geleneksel plastiklere sürdürülebilir bir alternatif olarak PBS'nin özelliklerini geliştirme potansiyelini vurgulamakta ve akıllı ambalajlar gibi daha ileri uygulamalar için araştırmacılara zemin hazırlamaktadır.

References

  • [1] Atta OM, Manan S, Shahzad A, Ul-Islam M, Ullah MW, Yang G. "Biobased materials for active food packaging: A review". Food Hydrocolloids, 125, 107419, 2022.
  • [2] Platnieks O, Gaidukovs S, Kumar Thakur V, Barkane A, Beluns S. "Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities". European Polymer Journal, 161, 110855, 2021.
  • [3] Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, et al. "A review on properties and application of bio‐based poly(Butylene succinate)". Polymers, 13(9), 1–28, 2021.
  • [4] Wu F, Misra M, Mohanty AK. "Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging". Progress in Polymer Science, 117, 101395, 2021.
  • [5] Cosquer R, Pruvost S, Gouanvé F. "Improvement of barrier properties of biodegradable polybutylene succinate/graphene nanoplatelets nanocomposites prepared by melt process". Membranes, 11(2), 1–25, 2021.
  • [6] PTT MCC Biochem Co. Ltd. “Introduction to BioPBSTM”. Bangkok, Thailand, 1, 2022.
  • [7] Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P. "A brief review of Poly (Butylene Succinate) (PBS) and its main and applications". Polymer, 14, 844, 2022.
  • [8] Threepopnatkul P, Charoendee N, Wiriyamontree N, Phodaeng A. "Effect of essential oil on properties of PBAT/PBS for bio-packaging films". Journal of Physics: Conference Series, 2175, 012023, 2022.
  • [9] Tarnlert W, Tansin K, Jariyasakoolroj P. "Poultry eggshell effects on microporous poly(lactic acid)-based film fabrication for active compound-releasing sachets". Polymer Bulletin, 79(2), 1217–1238, 2022.
  • [10] Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S. "Morphological, structural, thermal, permeability, and antimicrobial activity of PBS and PBS/TPS films ıncorporated with biomaster-silver for food packaging application". Polymers, 13(3), 391, 2021.
  • [11] Raffaela de A, Crocitti A, de Carvalho LH, Carroccio SC, Cerruti P, Santagata G. "Properties of biodegradable films based on poly(Butylene succinate) (pbs) and poly(butylene adipate-co-terephthalate) (pbat) blends". Polymers, 12(10), 1–17, 2020.
  • [12] Nuamduang P, Auras R, Winotapun C, Hararak B, Wanmolee W, Leelaphiwat P. "Enhanced antifungal properties of poly(butylene succinate) film with lignin nanoparticles and trans-cinnamaldehyde for mango packaging". International Journal of Biological Macromolecules, 267, 131185, 2024.
  • [13] Wattanawong N, Aht-Ong D. "Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films". Polymer Degradation and Stability, 183, 109459, 2021.
  • [14] Mallardo S, De Vito V, Malinconico M, Volpe MG, Santagata G, Di Lorenzo ML. "Poly(butylene succinate)-based composites containing β-cyclodextrin/d-limonene inclusion complex". European Polymer Journal, 79, 82–96, 2016.
  • [15] Mohamad N, Mazlan MM, Tawakkal ISMA, Talib RA, Kian LK, Jawaid M. "Characterization of active polybutylene succinate films filled essential oils for food packaging application". Journal of Polymers and the Environment, 30(2), 585–596, 2022.
  • [16] Chaochanchaikul K, Sakulkhaemaruethai C. "Effect of nanoclay and nano-calcium carbonate content on the properties of polybutylene succinate/nanoparticle composites". Journal of Plastic Film and Sheeting, 39(2), 190–210, 2023.
  • [17] Ray SS, Okamoto K, Okamoto M. "Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite". Journal of Applied Polymer Science, 102(1), 777–785, 2006.
  • [18] Deshmukh RK, Kumar L, Gaikwad KK. "Halloysite nanotubes for food packaging application: A review". Applied Clay Science, 234, e106856, 2023.
  • [19] Çetin ME, Tatar AC, Demir O, Önal G, Avcı A. "Effects of cryogenic and warm temperatures on quasi-static penetration resistance of carbon-aramid hybrid nanocomposites reinforced using halloysite nanotubes". Mechanics of Materials, 155, 103780, 2021.
  • [20] Çetin ME, Baştosun Y, Tatar AC, Cetin MH, Demir O, Önal G, et al. "The effect of halloysite nanotube modification on wear behavior of carbon-aramid fiber reinforced hybrid nanocomposites". Polymer Composites, 43(1), 624–637, 2022.
  • [21] Thomas SP. "Polyvinyl chloride (PVC)/ Halloysite (HNT) nanocomposites: Thermal stability and structural characterization studies". Journal of King Saud University - Engineering Sciences, 36(2), 98–104, 2024.
  • [22] Risyon NP, Othman SH, Basha RK, Talib RA. "Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging". Food Packaging and Shelf Life, 23, 100450, 2020.
  • [23] Wu W, Cao X, Luo J, He G, Zhang Y. "Morphology, thermal, and mechanical properties of poly(butylene succinate) reinforced with halloysite nanotube". Polymer Composites, 35(5), 847–855, 2014.
  • [24] Liu HY, Chen L, Li W, Wang KW. "Effect of halloysite nanotube loading on structure, mechanical and thermal properties of poly (l-lactic acid)/poly-(butylene succinate) blend". IOP Conference Series: Materials Science and Engineering, 634(1), 012012, 2019.
  • [25] Wang Y, Liu C, Shi X, Liang J, Jia Z, Shi G. "Synergistic effect of halloysite nanotubes on flame resistance of intumescent flame retardant poly(butylene succinate) composites". Polymer Composites, 40(1), 202–209, 2019.
  • [26] Boonsiriwit A, Xiao Y, Joung J, Kim M, Singh S, Lee YS. "Alkaline halloysite nanotubes/low density polyethylene nanocomposite films with increased ethylene absorption capacity: Applications in cherry tomato packaging". Food Packaging and Shelf Life, 25, 100533, 2020.
  • [27] Dumazert L, Rasselet D, Pang B, Gallard B, Kennouche S, Lopez-Cuesta JM. "Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives". Polymers for Advanced Technologies, 29(1), 69–83, 2018.
  • [28] Boonprasith P, Wootthikanokkhan J, Nimitsiriwat N. "Mechanical, thermal, and barrier properties of nanocomposites based on poly(butylene succinate)/thermoplastic starch blends containing different types of clay". Journal of Applied Polymer Science, 130, 1114–1123, 2013.
  • [29] Gaikwad KK, Singh S, Lee YS. "High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications". Environmental Chemistry Letters, 16(3), 1055-1062, 2018.
  • [30] Boro U, Priyadarsini A, Moholkar VS. "Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications". International Journal of Biological Macromolecules, 216, 927–39, 2022.
  • [31] Wang Q, Zhang J, Wang A. "Alkali activation of halloysite for adsorption and release of ofloxacin". Applied Surface Science, 287, 54–61, 2013.
  • [32] Yin Y, Yang J, Meng L. "Preparation of poly(butylene succinate) vitrimer with thermal shape stability via transesterification reaction". Journal of Applied Polymer Science, 138(39), 1–10, 2021.
  • [33] Yuan P, Tan D, Annabi-Bergaya F. "Properties and applications of halloysite nanotubes: Recent research advances and future prospects". Applied Clay Science, 112–113, 75–93, 2015.
  • [34] Ucpinar Durmaz B, Ugur Nigiz F, Aytac A. "Active packaging films based on poly(butylene succinate) films reinforced with alkaline halloysite nanotubes: Production, properties, and fruit packaging applications". Applied Clay Science, 259, 107517, 2024.
  • [35] Ayu R, Khalina A, Harmaen A, Zaman K, Jawaid M, Lee C. "Effect of Modified Tapioca Starch on Mechanical, Thermal, and Morphological Properties of PBS Blends for Food Packaging". Polymers, 10(11), 1187, 2018.
  • [36] Yao SF, Chen XT, Ye HM. "Investigation of Structure and Crystallization Behavior of Poly(butylene succinate) by Fourier Transform Infrared Spectroscopy". Journal of Physical Chemistry B, 121(40), 9476–9485, 2017.
  • [37] Zhang J, Hirschberg V, Pollard M, Wilhelm M, Rodrigue D. "Effect of mechanical recycling on the rheological and mechanical properties of bio-based and bio-degradable polybutylene succinate". Resources, Conservation and Recycling, 209, 107741, 2024.
  • [38] Basbasan AJ, Hararak B, Winotapun C, Wanmolee W, Chinsirikul W, Leelaphiwat P, Chonhenchob V, Boonruang K. "Lignin nanoparticles for enhancing physicochemical and antimicrobial properties of polybutylene succinate/thymol composite film for active packaging". Polymers, 15(4), 989, 2023.
  • [39] Siraj N, Hashmi SAR, Verma S. "Thermo-mechanical and morphological studies of Hal-reinforced PEEK". Applied Clay Science, 245, 107153, 2023.
  • [40] Carli LN, Crespo JS, Mauler RS. "PHBV nanocomposites based on organomodified montmorillonite and halloysite: The effect of clay type on the morphology and thermal and mechanical properties". Composites Part A: Applied Science and Manufacturing, 42(11), 1601–1608, 2011.
There are 40 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Bedriye Üçpınar

Publication Date August 25, 2025
Submission Date August 12, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2025 Volume: 31 Issue: 4

Cite

APA Üçpınar, B. (2025). Effects of alkaline treated and untreated halloysite on the properties of poly(butylene succinate)/halloysite composite films. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(4), 687-693.
AMA Üçpınar B. Effects of alkaline treated and untreated halloysite on the properties of poly(butylene succinate)/halloysite composite films. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2025;31(4):687-693.
Chicago Üçpınar, Bedriye. “Effects of Alkaline Treated and Untreated Halloysite on the Properties of Poly(butylene Succinate) Halloysite Composite Films”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 4 (August 2025): 687-93.
EndNote Üçpınar B (August 1, 2025) Effects of alkaline treated and untreated halloysite on the properties of poly(butylene succinate)/halloysite composite films. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 4 687–693.
IEEE B. Üçpınar, “Effects of alkaline treated and untreated halloysite on the properties of poly(butylene succinate)/halloysite composite films”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 4, pp. 687–693, 2025.
ISNAD Üçpınar, Bedriye. “Effects of Alkaline Treated and Untreated Halloysite on the Properties of Poly(butylene Succinate) Halloysite Composite Films”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/4 (August2025), 687-693.
JAMA Üçpınar B. Effects of alkaline treated and untreated halloysite on the properties of poly(butylene succinate)/halloysite composite films. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:687–693.
MLA Üçpınar, Bedriye. “Effects of Alkaline Treated and Untreated Halloysite on the Properties of Poly(butylene Succinate) Halloysite Composite Films”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 4, 2025, pp. 687-93.
Vancouver Üçpınar B. Effects of alkaline treated and untreated halloysite on the properties of poly(butylene succinate)/halloysite composite films. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(4):687-93.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif