Araştırma Makalesi
BibTex RIS Kaynak Göster

Detection of colon cancer using k-means and deep learning algorithms on histopathological images

Yıl 2025, Cilt: 31 Sayı: 5, 821 - 832, 19.10.2025

Öz

In this research, a novel approach for classifying colon cancer was developed by employing two convolutional neural network (CNN) models, namely GoogLeNet and AlexNet. This approach involves training CNNs with histopathological images segmented into color clusters using an augmented k-means clustering algorithm, rather than utilizing original-raw images. This method was applied to 20 datasets with distinct structural and characteristic features, derived from larger datasets comprising both original and segmented images. The datasets were used to train and test CNN models. The results indicate that AlexNet, trained with segmented images, showed a 2% to 23% increase in accuracy performance, while GoogLeNet's accuracy performance improved by 2% to 27%. Notably, the proposed approach yielded higher accuracy with datasets containing non-homogeneous data.

Kaynakça

  • [1] Türkyılmaz M, Hacıkamiloğlu E, Baran Deniz E, Boztaş G, Dündar S, Kavak Ergün A, Sevinç A, Tütüncü S, Seymen E. “Türkiye Kanser İstatistikleri 2015”. Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü, Ankara, Türkiye, İstatistik Raporu, 2018.
  • [2] Türkyılmaz M, Oruç Hamavioğlu Eİ, Dündar S, Kavak Ergün A, Sevinç A, Tütüncü S. “Türkiye Kanser İstatistikleri 2018”. Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü, Ankara, Türkiye, İstatistik Raporu, 2022.
  • [3] Boyle P, Levin B. World Cancer Report 2008. 1st ed. Lyon, France, International Agency for Research on Cancer, 2008.
  • [4] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. “Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries”. CA: a Cancer Journal for Clinicians, 68(6), 394–424, 2018.
  • [5] Globocan. “Cancer Incidence and Mortality World-Wide”. http://globocan.iarc.fr (06.06.2024).
  • [6] Yurtsever U, Evirgen H, Avunduk MC. “A new augmented k- means algorithm for seed segmentation in microscopic images of the colon cancer”. Tehnicki Vjesnik-Technical Gazette, 25(2), 382–389, 2018.
  • [7] Isik H, Sezgin E, Avunduk MC. “A new software program for pathological data analysis”. Computers in Biology and Medicine, 40(8), 715-722, 2010.
  • [8] Altunbay D, Cigir C, Sokmensuer C, Gunduz-Demir C. “Color graphs for automated cancer diagnosis and grading”. IEEE Transactions on Biomedical Engineering, 57(3), 665–674, 2009.
  • [9] Yurtsever M, Yurtsever U. “Use of a convolutional neural network for the classification of microbeads in urban wastewater”. Chemosphere, 216, 271–280, 2019.
  • [10] Parelanickal SB, Jefferson J. “Detection of Colorectal Cancer from Histopathological Images Tissue Classification Using Deep Learning Techniques”. In 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 14-15 December 2023.
  • [11] Sari M, Moussaoui A, Hadid A. “Deep Learning Techniques for Colorectal Cancer Detection: Convolutional Neural Networks vs Vision Transformers”. In 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), Setif, Algeria, 12-14 May 2024.
  • [12] Peng CC, Lee BR. “Enhancing colorectal cancer histological image classification using transfer learning and ResNet50 CNN Model”. In 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 02-04 June 2023.
  • [13] Anju TE, Vimala S. “Tissue and tumor Epithelium classification using fine-tuned deep CNN models”. International Journal of Advanced Computer Science and Applications, 13(9), 306-314, 2022.
  • [14] Babu KK, Reddy BS, Chimma A, Pranav P, Kumar KS. “Colon cancer nuclei classification with convolutional neural networks”. 13th International Conference International Advanced Computing Conference, Kolhapur, India, 15–16 December 2023.
  • [15] Kumar VRP, Arulselvi M, Sastry KBS. “Comparative assessment of colon cancer classification using diverse deep learning approaches”. Journal of Data Science and Intelligent Systems, 1(2), 128-135, 2023.
  • [16] Kumar VRP, Arulselvi M, Sastry KBS. ”War strategy optimization-enabled Alex Net for classification of colon cancer”. In 2022 1st International Conference on Computational Science and Technology (ICCST), Chennai, India, 09-10 November 2022.
  • [17] Cheng G, Guo W. “Rock images classification by using deep convolution neural network”. The 2nd Annual International Conference on Information System and Artificial Intelligence (ISAI2017), China, 14-16 July 2017.
  • [18] Sachin R, Sowmya V, Govind D, Soman K. “Dependency of various color and intensity planes on CNN based image classification”. The 3rd International Symposium on Signal Processing and Intelligent Recognition Systems, Manipal, India, 13-16 September 2017.
  • [19] Diaz-Cely J, Arce-Lopera C, Mena JC, Quintero L. “The effect of color channel representations on the transferability of convolutional neural networks”. Computer Vision Conference CVC 2019, Las Vegas, 25-26 April 2019.
  • [20] Khojasteh P, Aliahmad B, Kumar DK. “A novel color space of fundus images for automatic exudates detection”. Biomedical Signal Processing and Control, 49, 240–249, 2019.
  • [21] Yurtsever U. Detecting Colon Cancer Using Deep Learning on Segmented Histopathological Images. PhD Thesis, Sakarya University, Sakarya, Türkiye, 2019.
  • [22] Ekicioğlu G, Özkan N, Salvaazar E. “Hematoksilen-eozin (hematoxylin-eosin)(h&e)”. Aegean Pathology Journal, 2, 58–61, 2005.
  • [23] Lillie R, Fullmer H. Histopathologic Technic and Practical Histochemistry. 3nd ed. New York, USA, McGraw-Hill, 1976.
  • [24] Sirinukunwattana K, Pluim JPW, Chen H, Qi X, Heng PA, Guo YB, Wang LY, Matuszewski BJ, Bruni E, Sanchez U, Böhm A, Ronneberger O, Cheikh BB, Racoceanu D, Kainz P, Pfeiffer M, Urschler M, Snead DRJ, Rajpoot NM. “Gland segmentation in colon histology images: The glas challenge contest”. Medical Image Analysis, 35, 489–502, 2017.
  • [25] Sirinukunwattana K, Snead DR, Rajpoot NM. “A stochastic polygons model for glandular structures in colon histology images”. IEEE Transactions on Medical Imaging, 34(11), 2366–2378, 2015.
  • [26] Nvidia-Digits. “The Nvidia Digits 6.0 Software”. https://developer.nvidia.com/digits (06.08.2020).
  • [27] Nvidia-Cuda. “The Nvidia Cuda Toolkit 9.0 Software”. https://developer.nvidia.com/cuda-toolkit-archive (06.08.2020).
  • [28] Nvidia-cuDNN. “The Nvidia Cuda Deep Neural Network Library (Cudnn) Software”. https://developer.nvidia.com/cudnn (06.08.2020).
  • [29] Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. “Caffe: Convolutional architecture for fast feature embedding”. arXiv 2014. https://doi.org/10.48550/arXiv.1408.5093
  • [30] Nvidia-Caffe. “The Nvidia Caffe Software”. https://github.com/NVIDIA/caffe (06.08.2020).
  • [31] Albayrak S. “Color quantization by modified k-means algorithm”. Pakistan Journal of Applied Sciences, 1(4), 508–511, 2001.
  • [32] Albayrak S, Karslıgil M. “The color clustering in color images with weighted k-means method”. 9th Signal Processing and Application Congress SIU-2001, Gazi Mağusa, KKTC, 25-27 April 2001.
  • [33] Goodfellow I, Bengio Y, Courville A. Derin Öğrenme. 1. Baskı. Ankara, Türkiye, Buzdağı, 2018.
  • [34] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sanchez CI. “A survey on deep learning in medical image analysis”. Medical Image Analysis, 42, 60–88, 2017.
  • [35] Lopez AR, Giro-i Nieto X, Burdick J, Marques O. “Skin lesion classification from dermoscopic images using deep learning techniques”. 13th IASTED International Conference on Biomedical Engineering (BioMed), Insbruck, Austria, 20-21 February 2017.
  • [36] Bilginer O, Tunga B, Demirer RM. “Classification of skin lesions using convolutional neural networks”. Pamukkale University Journal of Engineering Sciences, 28(2), 208-214, 2022.
  • [37] Akalın F, Yumusak N. “Classification of acute leukaemias with a hybrid use of feature selection algorithms and deep learning-based architectures”. Pamukkale University Journal of Engineering Sciences, 29(3), 256-263, 2023.
  • [38] Kızrak MA, Bolat B. “A comprehensive survey of deep learning in crowd analysis”. International Journal of Informatics Technologies, 11(3), 263–286, 2018.
  • [39] LeCun Y, Bottou L, Bengio Y, Haffner P. “Gradient- based learning applied to document recognition”. Proceedings of the IEEE, 86(11), 2278–2324, 1998.
  • [40] Krizhevsky A, Sutskever I, Hinton GE. Imagenet Classification with Deep Convolutional Neural Networks. Editors: Pereira F, Burges CJ, Bottou L, Weinberger KQ. Advances in neural information processing systems, 1097–1105, Curran Associates Inc, 2012.
  • [41] Zeiler M, Fergus R. “Visualizing and understanding convolutional networks”. In European Conference on Computer Vision, Zurich, Switzerland, 6-12 September 2014.
  • [42] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. “Going deeper with convolutions”. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015.
  • [43] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. “Going deeper with convolutions”. arXiv, 2014. https://doi.org/10.48550/arXiv.1409.4842
  • [44] Simonyan K, Zisserman A.  “Very deep convolutional networks for large-scale image recognition”. arXiv, 2014. https://doi.org/10.48550/arXiv.1409.1556
  • [45] He K, Zhang X, Ren S, Sun J. “Deep residual learning for image recognition”. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016.

Histopatolojik görüntüler üzerinde k-ortalamalar ve derin öğrenme algoritmaları kullanılarak kolon kanseri tespiti

Yıl 2025, Cilt: 31 Sayı: 5, 821 - 832, 19.10.2025

Öz

Bu araştırmada, GoogLeNet ve AlexNet olmak üzere iki evrişimli sinir ağı (CNN) modeli kullanılarak kolon kanserinin sınıflandırılması için yeni bir yaklaşım geliştirilmiştir. Bu yaklaşımda CNN'ler, orijinal ham görüntüleri kullanmak yerine, artırılmış bir k-ortalamalar kümeleme algoritması kullanılarak renk kümelerine ayrılmış histopatolojik görüntüleri kullanarak eğitilmektedir. Bu yöntem hem orijinal hem de bölütlenmiş görüntülerden oluşan daha büyük veri kümelerinden elde edilen farklı yapısal ve karakteristik özelliklere sahip 20 veri kümesine uygulanmıştır. Veri kümeleri CNN modellerini eğitmek ve test etmek için kullanılmıştır. Sonuçlar, bölümlere ayrılmış görüntülerle eğitilen AlexNet'in doğruluk performansında %2 ile %23 arasında bir artış gösterdiğini, GoogLeNet'in doğruluk performansının ise %2 ile %27 arasında iyileştiğini ortaya koymuştur. Özellikle, önerilen yaklaşım homojen olmayan verilere sahip veri kümelerinde daha yüksek doğruluk sağlamıştır.

Kaynakça

  • [1] Türkyılmaz M, Hacıkamiloğlu E, Baran Deniz E, Boztaş G, Dündar S, Kavak Ergün A, Sevinç A, Tütüncü S, Seymen E. “Türkiye Kanser İstatistikleri 2015”. Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü, Ankara, Türkiye, İstatistik Raporu, 2018.
  • [2] Türkyılmaz M, Oruç Hamavioğlu Eİ, Dündar S, Kavak Ergün A, Sevinç A, Tütüncü S. “Türkiye Kanser İstatistikleri 2018”. Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü, Ankara, Türkiye, İstatistik Raporu, 2022.
  • [3] Boyle P, Levin B. World Cancer Report 2008. 1st ed. Lyon, France, International Agency for Research on Cancer, 2008.
  • [4] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. “Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries”. CA: a Cancer Journal for Clinicians, 68(6), 394–424, 2018.
  • [5] Globocan. “Cancer Incidence and Mortality World-Wide”. http://globocan.iarc.fr (06.06.2024).
  • [6] Yurtsever U, Evirgen H, Avunduk MC. “A new augmented k- means algorithm for seed segmentation in microscopic images of the colon cancer”. Tehnicki Vjesnik-Technical Gazette, 25(2), 382–389, 2018.
  • [7] Isik H, Sezgin E, Avunduk MC. “A new software program for pathological data analysis”. Computers in Biology and Medicine, 40(8), 715-722, 2010.
  • [8] Altunbay D, Cigir C, Sokmensuer C, Gunduz-Demir C. “Color graphs for automated cancer diagnosis and grading”. IEEE Transactions on Biomedical Engineering, 57(3), 665–674, 2009.
  • [9] Yurtsever M, Yurtsever U. “Use of a convolutional neural network for the classification of microbeads in urban wastewater”. Chemosphere, 216, 271–280, 2019.
  • [10] Parelanickal SB, Jefferson J. “Detection of Colorectal Cancer from Histopathological Images Tissue Classification Using Deep Learning Techniques”. In 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 14-15 December 2023.
  • [11] Sari M, Moussaoui A, Hadid A. “Deep Learning Techniques for Colorectal Cancer Detection: Convolutional Neural Networks vs Vision Transformers”. In 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), Setif, Algeria, 12-14 May 2024.
  • [12] Peng CC, Lee BR. “Enhancing colorectal cancer histological image classification using transfer learning and ResNet50 CNN Model”. In 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 02-04 June 2023.
  • [13] Anju TE, Vimala S. “Tissue and tumor Epithelium classification using fine-tuned deep CNN models”. International Journal of Advanced Computer Science and Applications, 13(9), 306-314, 2022.
  • [14] Babu KK, Reddy BS, Chimma A, Pranav P, Kumar KS. “Colon cancer nuclei classification with convolutional neural networks”. 13th International Conference International Advanced Computing Conference, Kolhapur, India, 15–16 December 2023.
  • [15] Kumar VRP, Arulselvi M, Sastry KBS. “Comparative assessment of colon cancer classification using diverse deep learning approaches”. Journal of Data Science and Intelligent Systems, 1(2), 128-135, 2023.
  • [16] Kumar VRP, Arulselvi M, Sastry KBS. ”War strategy optimization-enabled Alex Net for classification of colon cancer”. In 2022 1st International Conference on Computational Science and Technology (ICCST), Chennai, India, 09-10 November 2022.
  • [17] Cheng G, Guo W. “Rock images classification by using deep convolution neural network”. The 2nd Annual International Conference on Information System and Artificial Intelligence (ISAI2017), China, 14-16 July 2017.
  • [18] Sachin R, Sowmya V, Govind D, Soman K. “Dependency of various color and intensity planes on CNN based image classification”. The 3rd International Symposium on Signal Processing and Intelligent Recognition Systems, Manipal, India, 13-16 September 2017.
  • [19] Diaz-Cely J, Arce-Lopera C, Mena JC, Quintero L. “The effect of color channel representations on the transferability of convolutional neural networks”. Computer Vision Conference CVC 2019, Las Vegas, 25-26 April 2019.
  • [20] Khojasteh P, Aliahmad B, Kumar DK. “A novel color space of fundus images for automatic exudates detection”. Biomedical Signal Processing and Control, 49, 240–249, 2019.
  • [21] Yurtsever U. Detecting Colon Cancer Using Deep Learning on Segmented Histopathological Images. PhD Thesis, Sakarya University, Sakarya, Türkiye, 2019.
  • [22] Ekicioğlu G, Özkan N, Salvaazar E. “Hematoksilen-eozin (hematoxylin-eosin)(h&e)”. Aegean Pathology Journal, 2, 58–61, 2005.
  • [23] Lillie R, Fullmer H. Histopathologic Technic and Practical Histochemistry. 3nd ed. New York, USA, McGraw-Hill, 1976.
  • [24] Sirinukunwattana K, Pluim JPW, Chen H, Qi X, Heng PA, Guo YB, Wang LY, Matuszewski BJ, Bruni E, Sanchez U, Böhm A, Ronneberger O, Cheikh BB, Racoceanu D, Kainz P, Pfeiffer M, Urschler M, Snead DRJ, Rajpoot NM. “Gland segmentation in colon histology images: The glas challenge contest”. Medical Image Analysis, 35, 489–502, 2017.
  • [25] Sirinukunwattana K, Snead DR, Rajpoot NM. “A stochastic polygons model for glandular structures in colon histology images”. IEEE Transactions on Medical Imaging, 34(11), 2366–2378, 2015.
  • [26] Nvidia-Digits. “The Nvidia Digits 6.0 Software”. https://developer.nvidia.com/digits (06.08.2020).
  • [27] Nvidia-Cuda. “The Nvidia Cuda Toolkit 9.0 Software”. https://developer.nvidia.com/cuda-toolkit-archive (06.08.2020).
  • [28] Nvidia-cuDNN. “The Nvidia Cuda Deep Neural Network Library (Cudnn) Software”. https://developer.nvidia.com/cudnn (06.08.2020).
  • [29] Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. “Caffe: Convolutional architecture for fast feature embedding”. arXiv 2014. https://doi.org/10.48550/arXiv.1408.5093
  • [30] Nvidia-Caffe. “The Nvidia Caffe Software”. https://github.com/NVIDIA/caffe (06.08.2020).
  • [31] Albayrak S. “Color quantization by modified k-means algorithm”. Pakistan Journal of Applied Sciences, 1(4), 508–511, 2001.
  • [32] Albayrak S, Karslıgil M. “The color clustering in color images with weighted k-means method”. 9th Signal Processing and Application Congress SIU-2001, Gazi Mağusa, KKTC, 25-27 April 2001.
  • [33] Goodfellow I, Bengio Y, Courville A. Derin Öğrenme. 1. Baskı. Ankara, Türkiye, Buzdağı, 2018.
  • [34] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sanchez CI. “A survey on deep learning in medical image analysis”. Medical Image Analysis, 42, 60–88, 2017.
  • [35] Lopez AR, Giro-i Nieto X, Burdick J, Marques O. “Skin lesion classification from dermoscopic images using deep learning techniques”. 13th IASTED International Conference on Biomedical Engineering (BioMed), Insbruck, Austria, 20-21 February 2017.
  • [36] Bilginer O, Tunga B, Demirer RM. “Classification of skin lesions using convolutional neural networks”. Pamukkale University Journal of Engineering Sciences, 28(2), 208-214, 2022.
  • [37] Akalın F, Yumusak N. “Classification of acute leukaemias with a hybrid use of feature selection algorithms and deep learning-based architectures”. Pamukkale University Journal of Engineering Sciences, 29(3), 256-263, 2023.
  • [38] Kızrak MA, Bolat B. “A comprehensive survey of deep learning in crowd analysis”. International Journal of Informatics Technologies, 11(3), 263–286, 2018.
  • [39] LeCun Y, Bottou L, Bengio Y, Haffner P. “Gradient- based learning applied to document recognition”. Proceedings of the IEEE, 86(11), 2278–2324, 1998.
  • [40] Krizhevsky A, Sutskever I, Hinton GE. Imagenet Classification with Deep Convolutional Neural Networks. Editors: Pereira F, Burges CJ, Bottou L, Weinberger KQ. Advances in neural information processing systems, 1097–1105, Curran Associates Inc, 2012.
  • [41] Zeiler M, Fergus R. “Visualizing and understanding convolutional networks”. In European Conference on Computer Vision, Zurich, Switzerland, 6-12 September 2014.
  • [42] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. “Going deeper with convolutions”. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015.
  • [43] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. “Going deeper with convolutions”. arXiv, 2014. https://doi.org/10.48550/arXiv.1409.4842
  • [44] Simonyan K, Zisserman A.  “Very deep convolutional networks for large-scale image recognition”. arXiv, 2014. https://doi.org/10.48550/arXiv.1409.1556
  • [45] He K, Zhang X, Ren S, Sun J. “Deep residual learning for image recognition”. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Sistem Yazılımı
Bölüm Araştırma Makalesi
Yazarlar

Ulaş Yurtsever

Hayrettin Evirgen

Mustafa Avunduk

Yayımlanma Tarihi 19 Ekim 2025
Gönderilme Tarihi 24 Ocak 2024
Kabul Tarihi 7 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 5

Kaynak Göster

APA Yurtsever, U., Evirgen, H., & Avunduk, M. (2025). Detection of colon cancer using k-means and deep learning algorithms on histopathological images. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(5), 821-832.
AMA Yurtsever U, Evirgen H, Avunduk M. Detection of colon cancer using k-means and deep learning algorithms on histopathological images. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2025;31(5):821-832.
Chicago Yurtsever, Ulaş, Hayrettin Evirgen, ve Mustafa Avunduk. “Detection of colon cancer using k-means and deep learning algorithms on histopathological images”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 5 (Ekim 2025): 821-32.
EndNote Yurtsever U, Evirgen H, Avunduk M (01 Ekim 2025) Detection of colon cancer using k-means and deep learning algorithms on histopathological images. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 5 821–832.
IEEE U. Yurtsever, H. Evirgen, ve M. Avunduk, “Detection of colon cancer using k-means and deep learning algorithms on histopathological images”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, ss. 821–832, 2025.
ISNAD Yurtsever, Ulaş vd. “Detection of colon cancer using k-means and deep learning algorithms on histopathological images”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/5 (Ekim2025), 821-832.
JAMA Yurtsever U, Evirgen H, Avunduk M. Detection of colon cancer using k-means and deep learning algorithms on histopathological images. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:821–832.
MLA Yurtsever, Ulaş vd. “Detection of colon cancer using k-means and deep learning algorithms on histopathological images”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, 2025, ss. 821-32.
Vancouver Yurtsever U, Evirgen H, Avunduk M. Detection of colon cancer using k-means and deep learning algorithms on histopathological images. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(5):821-32.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.