Research Article
BibTex RIS Cite

The production of phenolic resin-based abrasive with use of solid waste sand of foundry industry

Year 2030,

Abstract

Molding sand, which becomes solid waste after casting processes, is an important item to be recycled and used, as well as turning it into useful products with economic value, due to the fact that it creates an environmental problem and increases storage costs. The studies on this subject are still insufficient. In this study, the SiC phase were obtained from solid waste casting sand whose basic material is silica and from phenolic resin as a C source, and their usability as an abrasive was investigated. Densities of the products were measured with a Helium pycnometer; the hardness with a Shore D device; pore structure and distribution with the BET method; the surface functions with a FTIR Fourier Transform Infrared Spectrometer; the development of bonds in the structure and morphology with a Confocal Raman Microscope; the phase analysis using the XRD method; and microstructural examinations with SEM analysis. As a result, it was determined that a high temperature was needed to obtain the SiC phase with the conventional pressure less sintering method using solid waste casting sand, but the resin used did not withstand the required high temperature.

References

  • [1] Sylvia JG. Cast Metals Technology. Pennsylvania, U.S, Massachusetts:Addison-Wesley, 1972.
  • [2] Kepez Ü. “Türkiye'de Döküm Sektörü - Demir Döküm”. TÜBİTAK Metal Teknoloji Platformu Oluşturma Çalıştayı, Kocaeli, Türkiye, 23-24 Şubat 2007.
  • [3] Bolat Ç, Bekar C, Gökşenli A. "Mechanical and physical characteristics of bubble alumina reinforced aluminum syntactic foams made through recyclable pressure infiltration technique". Gazi University Journal of Science, 35(1), 184-196, 2022.
  • [4] Bolat Ç, Akgün İ. C, Gökşenli A. "Effects of particle size, bimodality and heat treatment on mechanical properties of pumice reinforced aluminum syntactic foams produced by cold chamber die casting". China Foundry, 18(6), 529-540, 2021.
  • [5] Kumar D, Seetharam R, Ponappa K. "Effects of graphene nano particles on interfacial microstructure and mechanical properties of Al7150/B4C hybrid nanocomposite fabricated by novel double ultrasonic two stage stir casting technique". Journal of Alloys and Compounds, 1008, 176686, 2024.
  • [6] Lai K C, Tsai C, Yen S Y, Tseng K K, Yeh J W, Chen P Y. "Fabrication of novel 316L stainless steel scaffolds by combining freeze-casting and 3D-printed gyroid templating techniques". Materials Science and Engineering: A, 915, 147200, 2024.
  • [7] Aran A. Döküm Teknolojisi İmal Usulleri Ders Notları. İTÜ Makine Fakültesi, İstanbul, Türkiye, 2007.
  • [8] Aran A. Metal Döküm Teknolojisi. İTÜ Makine Fakültesi Ofset Atölyesi, İstanbul, Türkiye, 1989.
  • [9] Zanetti MC, Fiore S. "Foundry processes: The recovery of green moulding sands for core operations". Resources, Conservation and Recycling, 38(3), 243-254, 2003.
  • [10] Siddique R, Schutter G, Noumowe A. "Effect of used-foundry sand on the mechanical properties of concrete". Construction and Building Materials, 23(2), 976-980, 2009.
  • [11] Siddique R, Kaur G, Rajor G. "Waste foundry sand and its leachate characteristics". Resources, Conservation and Recycling, 54(12), 1027-1036, 2010.
  • [12] Clegg AJ. Precision Casting Processes. New York, U.S, Pergamon Press, 1991.
  • [13] Guney Y, Sari YD, Yalcin M, Tuncan A, Donmez S. "Re-usage of waste foundry sand in high-strength concrete". Waste Management, 30(8-9), 1705-1713, 2010.
  • [14] Dungan RS, Huwe J, Chaney RL. "Concentrations of PCDD/PCDFs and PCBs in spent foundry sands". Chemosphere, 75(9), 1232-1235, 2009.
  • [15] Dayton EA, Whitacre SD, Dungan RS, Basta NT. "Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils". Plant Soil, 329(1), 27-33. 2010.
  • [16] Şençoban Kaya S, Alaykıran K. "Hata türü ve etkileri analizi ve döküm sektöründe bir uygulama". Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 1(2), 76-89, 2019.
  • [17] Alias C, Cioli F, Abbà A, Feretti D, Sorlini S. "Ecotoxicological assessment of waste foundry sands and the application of different classification systems". Integrated Environmental Assessment and Management, 20(6), 2294–2311, 2024.
  • [18] Sgarlata C, Ariza-Tarazona MC, Paradisi E, Siligardi C, Lancellotti I. "Use of Foundry Sands in the Production of Ceramic and Geopolymers for Sustainable Construction Materials". Applied Sciences, 13, 516, 2023.
  • [19] Srinivasan D, Ramachandran S, Kannadasan K, Muthukaruppan A, Ismail AAM. *"Production of engineered stone from waste foundry sand using epoxy-phenalkamine binder". Construction and Building Materials, 419, 135464, 2024.
  • [20] Vijayakumar K, Viknesh K, Subash B, Vishnubalan J, Prakash K. "Utilisation of waste foundry sand by converting it to an integrant for grinding application". International Journal of Engineering Research & Technology (IJERT) ETDM-2017, 5(7), 1-4, 2017.
  • [21] Hossain R, Sahajwalla V. "Molecular recycling: A key approach to tailor the waste recycling for high-value nano silicon carbide". Journal of Cleaner Production, 316, 128344, 2021.
  • [22] Liu J, Guo J, Deng J, Fan S, Cai X, Kou S, Yang S. "Preparation and Properties of Boron Modified Phenolic Resin for Automotive Friction Materials". Materials (Basel). 18(7), 1624, 2025 .
  • [23] Zawrah MF, Shaw L. "Liquid-phase sintering of SiC in presence of CaO". Ceramics International, 30(5), 721-725. 2003.
  • [24] Acheson, E.G., Production of artificial crystalline carbonaceous materials. Patent # 492, 767, 1893.
  • [25] Ataman Chemicals. "Silicon Carbide".https://www.atamanchemicals.com/silicon-carbide_u26029/?lang=EN (11.11.2024).
  • [26] Expert. "Metalurjik Silisyum Karbür". https://expert.com.tr/metalurjik-silisyum-karbur/ (11 .11. 2024).
  • [27] Thulasiraman VA, Ganesapillai M. "A Systematic Review on the Synthesis of Silicon Carbide: An Alternative Approach to Valorisation of Residual Municipal Solid Waste". Processes, 11, 283, 2023.
  • [28] Kronos Metal. "Siyah Silisyum Karbür". https://kronosmetal.com.tr/tr/urunler/kumlama-ekipmanlari/siyah-silisyum-karbur (11.11.2024).
  • [29] Sun R, Zhang X, Hao X, Hu W, Wei X, Song X, Zhang Z, Ying P, Zhao S, Wang Y, Gao Y, Yu D, Xu B, Gao G, TianY. "Simultaneously enhanced toughness and hardness of nanocrystalline SiC sintered under high pressure". Journal of the European Ceramic Society, 45, 116829, 2025.
  • [30] Gençkan HD. Reaktif spark plazma sinterleme yöntemi ile B₄C/SiC kompoziti eldesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2009.
  • [31] Zhu Y, Luo D, Li Z, Wang Y, Cheng H, Wang F, Chen T. "Effect of sintering temperature on the mechanical properties and microstructures of pressureless-sintered B₄C/SiC ceramic composite with carbon additive". Journal of Alloys and Compound, 820(4), 153153, 2020.
  • [32] Yun SI, Youm MR, Nahm S, Park SW. "Fabrication and properties of macro-porous SiC using Al₂O₃–Y₂O₃–SiO₂ as bonding additives". Ceramics International, 47(9), 11979-11988, 2021.
  • [33] Gu N, Zhang H, Ge H, Wang F, Liu B. "In‑situ polymerization of graphene/SiO₂ hybrids modified phenolic resin for improved thermal stability at an ultralow filler loading." Polymer Bulletin, 78, 5963–5976, 2021.
  • [34] Plueddemann EP. Silane Coupling Agents. 2nd ed., New York, USA, Plenum, 1991.
  • [35] Miranda A, Martínez, De Beule PAA. "Facile synthesis of an aminopropylsilane layer on Si/SiO₂ substrates using ethanol as APTES solvent". MethodsX, 7, 100931, 2020.
  • [36] Zhang W, Lai EPC. "Chemical functionalities of 3-aminopropyltriethoxy-silane for surface modification of metal oxide nanoparticles". Silicon, 14(12), 6535–6545, 2022.
  • [37] Shin S, Kim M, Kim M, Kim U, Kim S, Kwak Y, Cho J. "Ultrafast high-temperature sintering of reaction-bonded SiC with Y2O3-Al2O3 sintering additives". Materials Letters, 382, 137956, 2025.
  • [38] Jamale S, Kumar BVM. "B4C-SiC composites with tuneable mechanical properties: Role of Al2O3 - Y2O3 sintering additives". Journal of Alloys and Compounds, 976, 172954, 2024.
  • [39] Nguyen P, Pham C. "Innovative porous SiC-based materials: From nanoscopic understandings to tunable carriers serving catalytic needs". Applied Catalysis A: General, 391, 443–454, 2011.
  • [40] Parmentiera J, Patarina J, Dentzerb J, Vix-Guterl C. "Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase: a new route to produce high surface area SiC". Ceramics International, 28, 1–7, 2002.
  • [41] Hynes A, Scott DA, Man A, Singer DL, Sowa MG, Liu KZ. "Molecular mapping of periodontal tissues using infrared microspectroscopy". BMC Medical Imaging, 5(2), 1-10, 2005.
  • [42] Atrak K, Ramazani A, Fardood ST. "Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes". Journal of Materials Science: Materials in Electronics, 29, 8347–8353, 2018.
  • [43] Zhang L, Li Z, Zhen F, Wang L, Zhang Q, Sun R, Selim FA., Wong C, Chen H. "High sinterability nano-Y2O3 powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics". Journal of Materials Science, 52, 8556–8567, 2017.
  • [44] Zabihi O, Khayyam H, Foxa BL, Naebe M. "Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling". New Journal of Chemistry, 3, 2015.
  • [45] Li X, Jiang D, Zhang J, Lin Q, Chen Z, Huang Z. "The dispersion of boron carbide powder in aqueous media". Journal of the European Ceramic Society, 33 (10), 1655-1663, 2013.
  • [46] Shahriary L, Athawale AA. "Graphene oxide synthesized by using modified Hummers approach". International Journal of Renewable Energy and Environmental Engineering, 2(1), 58-63, 2014.
  • [47] Wang F, Xiang D, Wang Y, Li J. "Rapid synthesis of SiC powders by spark plasma-assisted carbothermal reduction reaction." Ceramics International, 43(6), 4970–4975, 2017.

Döküm endüstrisi katı atık kumu kullanımı ile fenolik reçine bazlı aşındırıcı üretimi

Year 2030,

Abstract

Döküm işlemlerinden sonra katı atık haline gelen kalıp kumu, çevresel bir sorun yaratması ve depolama maliyetlerini artırması nedeniyle geri dönüştürülerek kullanılması ve ekonomik değeri olan faydalı ürünlere dönüştürülmesi önemli bir maddedir. Bu konuda yapılan çalışmalar henüz yetersizdir. Bu çalışmada, temel malzemesi silika olan katı atık döküm kumu ve C kaynağı olarak fenolik reçineden SiC fazı elde edilmiş ve aşındırıcı olarak kullanılabilirlikleri araştırılmıştır. Üretilen ürünlerin yoğunlukları Helyum piknometresi ile; sertlik değeri Shore D cihazı ile; gözenek yapısı ve dağılımı BET yöntemi ile; yüzey fonksiyonları FTIR Fourier Dönüşümlü Kızılötesi Spektrometresi ile; yapı ve morfolojideki bağların gelişimi Konfokal Raman Mikroskobu ile; faz analizi XRD yöntemi ile; mikroyapısal incelemeler SEM analizi ile yapılmıştır. Sonuç olarak, katı atık döküm kumu kullanılarak yapılan konvansiyonel basınçsız sinterleme yöntemi ile SiC fazının elde edilmesi için yüksek sıcaklığa ihtiyaç duyulduğu, ancak kullanılan reçinenin gerekli yüksek sıcaklığa dayanamadığı belirlenmiştir.

References

  • [1] Sylvia JG. Cast Metals Technology. Pennsylvania, U.S, Massachusetts:Addison-Wesley, 1972.
  • [2] Kepez Ü. “Türkiye'de Döküm Sektörü - Demir Döküm”. TÜBİTAK Metal Teknoloji Platformu Oluşturma Çalıştayı, Kocaeli, Türkiye, 23-24 Şubat 2007.
  • [3] Bolat Ç, Bekar C, Gökşenli A. "Mechanical and physical characteristics of bubble alumina reinforced aluminum syntactic foams made through recyclable pressure infiltration technique". Gazi University Journal of Science, 35(1), 184-196, 2022.
  • [4] Bolat Ç, Akgün İ. C, Gökşenli A. "Effects of particle size, bimodality and heat treatment on mechanical properties of pumice reinforced aluminum syntactic foams produced by cold chamber die casting". China Foundry, 18(6), 529-540, 2021.
  • [5] Kumar D, Seetharam R, Ponappa K. "Effects of graphene nano particles on interfacial microstructure and mechanical properties of Al7150/B4C hybrid nanocomposite fabricated by novel double ultrasonic two stage stir casting technique". Journal of Alloys and Compounds, 1008, 176686, 2024.
  • [6] Lai K C, Tsai C, Yen S Y, Tseng K K, Yeh J W, Chen P Y. "Fabrication of novel 316L stainless steel scaffolds by combining freeze-casting and 3D-printed gyroid templating techniques". Materials Science and Engineering: A, 915, 147200, 2024.
  • [7] Aran A. Döküm Teknolojisi İmal Usulleri Ders Notları. İTÜ Makine Fakültesi, İstanbul, Türkiye, 2007.
  • [8] Aran A. Metal Döküm Teknolojisi. İTÜ Makine Fakültesi Ofset Atölyesi, İstanbul, Türkiye, 1989.
  • [9] Zanetti MC, Fiore S. "Foundry processes: The recovery of green moulding sands for core operations". Resources, Conservation and Recycling, 38(3), 243-254, 2003.
  • [10] Siddique R, Schutter G, Noumowe A. "Effect of used-foundry sand on the mechanical properties of concrete". Construction and Building Materials, 23(2), 976-980, 2009.
  • [11] Siddique R, Kaur G, Rajor G. "Waste foundry sand and its leachate characteristics". Resources, Conservation and Recycling, 54(12), 1027-1036, 2010.
  • [12] Clegg AJ. Precision Casting Processes. New York, U.S, Pergamon Press, 1991.
  • [13] Guney Y, Sari YD, Yalcin M, Tuncan A, Donmez S. "Re-usage of waste foundry sand in high-strength concrete". Waste Management, 30(8-9), 1705-1713, 2010.
  • [14] Dungan RS, Huwe J, Chaney RL. "Concentrations of PCDD/PCDFs and PCBs in spent foundry sands". Chemosphere, 75(9), 1232-1235, 2009.
  • [15] Dayton EA, Whitacre SD, Dungan RS, Basta NT. "Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils". Plant Soil, 329(1), 27-33. 2010.
  • [16] Şençoban Kaya S, Alaykıran K. "Hata türü ve etkileri analizi ve döküm sektöründe bir uygulama". Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 1(2), 76-89, 2019.
  • [17] Alias C, Cioli F, Abbà A, Feretti D, Sorlini S. "Ecotoxicological assessment of waste foundry sands and the application of different classification systems". Integrated Environmental Assessment and Management, 20(6), 2294–2311, 2024.
  • [18] Sgarlata C, Ariza-Tarazona MC, Paradisi E, Siligardi C, Lancellotti I. "Use of Foundry Sands in the Production of Ceramic and Geopolymers for Sustainable Construction Materials". Applied Sciences, 13, 516, 2023.
  • [19] Srinivasan D, Ramachandran S, Kannadasan K, Muthukaruppan A, Ismail AAM. *"Production of engineered stone from waste foundry sand using epoxy-phenalkamine binder". Construction and Building Materials, 419, 135464, 2024.
  • [20] Vijayakumar K, Viknesh K, Subash B, Vishnubalan J, Prakash K. "Utilisation of waste foundry sand by converting it to an integrant for grinding application". International Journal of Engineering Research & Technology (IJERT) ETDM-2017, 5(7), 1-4, 2017.
  • [21] Hossain R, Sahajwalla V. "Molecular recycling: A key approach to tailor the waste recycling for high-value nano silicon carbide". Journal of Cleaner Production, 316, 128344, 2021.
  • [22] Liu J, Guo J, Deng J, Fan S, Cai X, Kou S, Yang S. "Preparation and Properties of Boron Modified Phenolic Resin for Automotive Friction Materials". Materials (Basel). 18(7), 1624, 2025 .
  • [23] Zawrah MF, Shaw L. "Liquid-phase sintering of SiC in presence of CaO". Ceramics International, 30(5), 721-725. 2003.
  • [24] Acheson, E.G., Production of artificial crystalline carbonaceous materials. Patent # 492, 767, 1893.
  • [25] Ataman Chemicals. "Silicon Carbide".https://www.atamanchemicals.com/silicon-carbide_u26029/?lang=EN (11.11.2024).
  • [26] Expert. "Metalurjik Silisyum Karbür". https://expert.com.tr/metalurjik-silisyum-karbur/ (11 .11. 2024).
  • [27] Thulasiraman VA, Ganesapillai M. "A Systematic Review on the Synthesis of Silicon Carbide: An Alternative Approach to Valorisation of Residual Municipal Solid Waste". Processes, 11, 283, 2023.
  • [28] Kronos Metal. "Siyah Silisyum Karbür". https://kronosmetal.com.tr/tr/urunler/kumlama-ekipmanlari/siyah-silisyum-karbur (11.11.2024).
  • [29] Sun R, Zhang X, Hao X, Hu W, Wei X, Song X, Zhang Z, Ying P, Zhao S, Wang Y, Gao Y, Yu D, Xu B, Gao G, TianY. "Simultaneously enhanced toughness and hardness of nanocrystalline SiC sintered under high pressure". Journal of the European Ceramic Society, 45, 116829, 2025.
  • [30] Gençkan HD. Reaktif spark plazma sinterleme yöntemi ile B₄C/SiC kompoziti eldesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2009.
  • [31] Zhu Y, Luo D, Li Z, Wang Y, Cheng H, Wang F, Chen T. "Effect of sintering temperature on the mechanical properties and microstructures of pressureless-sintered B₄C/SiC ceramic composite with carbon additive". Journal of Alloys and Compound, 820(4), 153153, 2020.
  • [32] Yun SI, Youm MR, Nahm S, Park SW. "Fabrication and properties of macro-porous SiC using Al₂O₃–Y₂O₃–SiO₂ as bonding additives". Ceramics International, 47(9), 11979-11988, 2021.
  • [33] Gu N, Zhang H, Ge H, Wang F, Liu B. "In‑situ polymerization of graphene/SiO₂ hybrids modified phenolic resin for improved thermal stability at an ultralow filler loading." Polymer Bulletin, 78, 5963–5976, 2021.
  • [34] Plueddemann EP. Silane Coupling Agents. 2nd ed., New York, USA, Plenum, 1991.
  • [35] Miranda A, Martínez, De Beule PAA. "Facile synthesis of an aminopropylsilane layer on Si/SiO₂ substrates using ethanol as APTES solvent". MethodsX, 7, 100931, 2020.
  • [36] Zhang W, Lai EPC. "Chemical functionalities of 3-aminopropyltriethoxy-silane for surface modification of metal oxide nanoparticles". Silicon, 14(12), 6535–6545, 2022.
  • [37] Shin S, Kim M, Kim M, Kim U, Kim S, Kwak Y, Cho J. "Ultrafast high-temperature sintering of reaction-bonded SiC with Y2O3-Al2O3 sintering additives". Materials Letters, 382, 137956, 2025.
  • [38] Jamale S, Kumar BVM. "B4C-SiC composites with tuneable mechanical properties: Role of Al2O3 - Y2O3 sintering additives". Journal of Alloys and Compounds, 976, 172954, 2024.
  • [39] Nguyen P, Pham C. "Innovative porous SiC-based materials: From nanoscopic understandings to tunable carriers serving catalytic needs". Applied Catalysis A: General, 391, 443–454, 2011.
  • [40] Parmentiera J, Patarina J, Dentzerb J, Vix-Guterl C. "Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase: a new route to produce high surface area SiC". Ceramics International, 28, 1–7, 2002.
  • [41] Hynes A, Scott DA, Man A, Singer DL, Sowa MG, Liu KZ. "Molecular mapping of periodontal tissues using infrared microspectroscopy". BMC Medical Imaging, 5(2), 1-10, 2005.
  • [42] Atrak K, Ramazani A, Fardood ST. "Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes". Journal of Materials Science: Materials in Electronics, 29, 8347–8353, 2018.
  • [43] Zhang L, Li Z, Zhen F, Wang L, Zhang Q, Sun R, Selim FA., Wong C, Chen H. "High sinterability nano-Y2O3 powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics". Journal of Materials Science, 52, 8556–8567, 2017.
  • [44] Zabihi O, Khayyam H, Foxa BL, Naebe M. "Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling". New Journal of Chemistry, 3, 2015.
  • [45] Li X, Jiang D, Zhang J, Lin Q, Chen Z, Huang Z. "The dispersion of boron carbide powder in aqueous media". Journal of the European Ceramic Society, 33 (10), 1655-1663, 2013.
  • [46] Shahriary L, Athawale AA. "Graphene oxide synthesized by using modified Hummers approach". International Journal of Renewable Energy and Environmental Engineering, 2(1), 58-63, 2014.
  • [47] Wang F, Xiang D, Wang Y, Li J. "Rapid synthesis of SiC powders by spark plasma-assisted carbothermal reduction reaction." Ceramics International, 43(6), 4970–4975, 2017.
There are 47 citations in total.

Details

Primary Language English
Subjects Environmental and Sustainable Processes
Journal Section Research Article
Authors

Tuba Bahtlı

Yasin Ramazan Eker

Veysel Murat Bostancı This is me

Pinar Uyan

Early Pub Date October 31, 2025
Publication Date November 20, 2025
Submission Date January 29, 2025
Acceptance Date October 22, 2025
Published in Issue Year 2030

Cite

APA Bahtlı, T., Eker, Y. R., Bostancı, V. M., Uyan, P. (2025). The production of phenolic resin-based abrasive with use of solid waste sand of foundry industry. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. https://doi.org/10.65206/pajes.00579
AMA Bahtlı T, Eker YR, Bostancı VM, Uyan P. The production of phenolic resin-based abrasive with use of solid waste sand of foundry industry. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Published online October 1, 2025. doi:10.65206/pajes.00579
Chicago Bahtlı, Tuba, Yasin Ramazan Eker, Veysel Murat Bostancı, and Pinar Uyan. “The Production of Phenolic Resin-Based Abrasive With Use of Solid Waste Sand of Foundry Industry”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, October (October 2025). https://doi.org/10.65206/pajes.00579.
EndNote Bahtlı T, Eker YR, Bostancı VM, Uyan P (October 1, 2025) The production of phenolic resin-based abrasive with use of solid waste sand of foundry industry. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
IEEE T. Bahtlı, Y. R. Eker, V. M. Bostancı, and P. Uyan, “The production of phenolic resin-based abrasive with use of solid waste sand of foundry industry”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, October2025, doi: 10.65206/pajes.00579.
ISNAD Bahtlı, Tuba et al. “The Production of Phenolic Resin-Based Abrasive With Use of Solid Waste Sand of Foundry Industry”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October2025. https://doi.org/10.65206/pajes.00579.
JAMA Bahtlı T, Eker YR, Bostancı VM, Uyan P. The production of phenolic resin-based abrasive with use of solid waste sand of foundry industry. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025. doi:10.65206/pajes.00579.
MLA Bahtlı, Tuba et al. “The Production of Phenolic Resin-Based Abrasive With Use of Solid Waste Sand of Foundry Industry”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2025, doi:10.65206/pajes.00579.
Vancouver Bahtlı T, Eker YR, Bostancı VM, Uyan P. The production of phenolic resin-based abrasive with use of solid waste sand of foundry industry. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif