Research Article
BibTex RIS Cite

Enhanced multi-layer perceptron model training with ant lion optimization for transmitarray unit cell design

Year 2030,

Abstract

In the first step of the presented study, a unit cell of the transmitarray antenna is designed, and the transmission phase characteristics are obtained by considering the design parameters. In the second step of the study, two different models, the Multilayer Perceptron (MLP) and AntLion Optimizer (ALO), an enhanced MLP neural network, are developed and trained using the simulated data of the designed unit cell element of the transmitarray. In order to evaluate the performance of the models, root mean square error (RMSE) values were calculated, and the performance of both models was compared. Thus, a high accuracy model was developed for the design parameters and transmission phase of the designed unit cell. The study presents an innovative and effective approach to the design of the unit cell of transmitarray, especially in 5G beyond communication systems, and highlights the potential of optimization and machine learning integration.

References

  • [1] Aziz A, Yang F, Xu S, Li M, Chen HT. “A high-gain dual-band and dual-polarized transmitarray using novel loop elements”. IEEE Antennas and Wireless Propagation Letters, 18(6) ,1213-1217, 2019.
  • [2] Reis JR, Vala M, Caldeirinha RFS. “Review paper on transmitarray antennas”. IEEE Access, 7, 94171-94188, 2019.
  • [3] Abdelrahman AH, Yang F, Elsherbeni, AZ, Nayeri, P. Analysis and design of transmitarray antennas. San Francisco, CA, USA, Morgan& Claypool, 2017
  • [4] Malkoç M, Ünaldı S, Çimen, S. “Düşük profil mm-dalga bandı 5g uygulamaları için ileti dizi anten tasarımı”. In 5th. International Congress on Contemporary Scientific Research, (846-856), Kayseri, Turkiye, Nisan 2024.
  • [5] Yang S, Yan Z, Liu P, Li XA. “Linearly-polarized-feed dual-circularly polarized dual-beam transmitarray with ındependent beam contro”l. IEEE Antennas and Wireless Propagation Letters, 21(7), 1497-1501, 2022.
  • [6] Belen MA, Caliskan, Koziel S. et al. “Optimal design of transmitarray antennas via low-cost surrogate modelling”. Scientific Reports 13, 15044, 2023.
  • [7] Malkoç M, Ünaldı S, Çimen S. “Low-Cost Transmitarray Design with High Gain Bandwidth and Suppressed SLL”. Electronics, 14(20), 4044, 2025.
  • [8] Song L, Wang Y, Guo L. “A low-cost ultrathin metal-only transmitarray antenna at x-band,” IEEE Antennas and Wireless Propagation Letters, 23(5), 1443-1447, 2024.
  • [9] Khan MI, Loconsole AM, Anelli F, Francione VV, Khan AU, Simone M, Sorbello G, Prudenzano F. “A low-profile dual-polarized transmitarray with enhanced gain and beam steering at Ku band”. Applied Sciences 15(9), 4656, 2025.
  • [10] Goudos SK, Diamantoulakis PD, Matin MA, Sarigiannidis P, Wan S, Karagiannidis GK. “Design of antennas through artificial intelligence: State of the art and challenges”. IEEE Communication Magazine, (12), 96–102, 2022.
  • [11] Gayatri T. et al. “A review on optimization techniques of antennas using ai and ml/dl algorithms”. International Journal of Advances in Microwave Technology 7(2), 288-295,2022.
  • [12] Li H. et al. “Design of programmable transmitarray antenna with ındependent controls of transmission amplitude and phase”. IEEE Transactions on Antennas and Propagation, 70(9), 8086-8099, 2022.
  • [13] Noureddine M. et al. “Wideband transmitarray with independent phase/amplitude control for millimeter-wave vehicular sensing and communication”. AEU-International Journal of Electronics and Communications 195 (2025): 155771, 2025.
  • [14] Deng, WQ, Xu S, Xu Z, and Zhu SY. “Automated design of millimeter-wave dielectric transmitarray antenna using tandem network”. IEEE Antennas and Wireless Propagation Letters, 23(11), 3549-3553, 2024.
  • [15] Huang, Q, Leung, KW. “Transmitarray design of dielectric resonator antennas using deep learning”, In 2024 IEEE International Workshop on Antenna Technology (iWAT), Sendai, Japan, (32-35), 2024.
  • [16] Murtagh F. “Multilayer perceptrons for classification and regression”. Neurocomputing, 2(5-6), 183-197, 1991.
  • [17] Sze V, Chen, YH, Yang TJ, Emer JS. “Efficient processing of deep neural networks: A tutorial and survey”. Proceedings of the IEEE, 105(12), 2295-2329, 2017.
  • [18] Dong S, Wang P, Abbas K. “A survey on deep learning and its applications”. Computer Science Review, 40, 100379, 2021.
  • [19] Ojha VK, Abraham A, Snášel V. “Metaheuristic design of feedforward neural networks: A review of two decades of research”. Engineering Applications of Artificial Intelligence, 60, 97-116, 2017.
  • [20] Silver RA. “Neuronal arithmetic”. Nature Reviews Neuroscience, 11(7), 474-489, 2010.
  • [21] Abuqaddom I, Mahafzah BA, Faris H. “Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks without vanishing gradients”. Knowledge-Based Systems, 230, 107391, 2021.
  • [22] Singarimbun RN, Nababan EB, Sitompul OS. “Adaptive moment estimation to minimize square error in backpropagation algorithm”. In 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM) 1-7, November 2019,
  • [23] Ramchoun H, Ghanou Y, Ettaouil M, Janati Idrissi MA. “Multilayer perceptron: Architecture optimization and training”.
  • [24] Reddy BNK, Jogi S. “Design and Implementation of an FPGA-based Emulator Circuit for MLP using Memristors”. In 2024 28th International Symposium on VLSI Design and Test (VDAT) 1-6, September 2024.
  • [25] Zhang M, Wen G, Zhong J, Chen D, Wang C, Huang X, Zhang S. “MLP-like model with convolution complex transformation for auxiliary diagnosis through medical images”. IEEE Journal of Biomedical and Health Informatics, 27(9), 4385-4396, 2023.
  • [26] Hong Y, Zhang M, WQ. “Big data and reliability applications: The complexity dimension”. Journal of Quality Technology, 50(2), 135-149, 2018.
  • [27] Liu R, Li Y, Tao L, Liang D, Zheng H T. “Are we ready for a new paradigm shift? a survey on visual deep mlp”. Patterns, 3(7), 2022.
  • [28] Mirjalili S. “The ant lion optimizer”. Advances in engineering software, 83, 80-98, 2015.
  • [29] Li L, Wu WY. “Antlion algorithm based on ımmune cloning and ıts truss optimization”, 2017.
  • [30] Emary E, Zawbaa H M, Hassanien A E. “Binary ant lion approaches for feature selection”. Neurocomputing, 213, 54-65, 2016.
  • [31] Giveki D, Zaheri A, Allahyari N. “Designing CNNs with optimal architectures using antlion optimization for plant leaf recognition”. Multimedia Tools and Applications, 84(8), 4625-4654, 2025.
  • [32] Mouassa S, Bouktir T, Salhi A. “Ant lion optimizer for solving optimal reactive power dispatch problem in power systems”. Engineering science and technology, an international journal, 20(3), 885-895, 2017.
  • [33] Wang Y, Shi Q. “Spare parts closed-loop logistics network optimization problems: Model formulation and meta-heuristics solution”. IEEE Access, 7, 45048-45060, 2019.
  • [34] Karasu S, Ünaldı S. “Estimating the bandwidth of the metamaterial antenna with machine learning and feature ımportance methods”. In 4th International Scientific Research and Innovation Congress 1017-1027, December 2022.
  • [35] Özkaya U, Seyfi L, Öztürk Ş. “Dimension optimization of mullti-band microstrip antennasusing deep learning methods”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 229-233, 2021.

İleti dizi birim hücre tasarımı için karınca aslanı optimizasyonu ile geliştirilmiş çok katmanlı algılayıcı modeli eğitimi

Year 2030,

Abstract

Bu çalışmada, öncelikle bir ileti dizi anten birim hücresi tasarlanmış ve tasarım parametreleri ele alınarak iletim fazı karakteristiği elde edilmiştir. Çalışmanın ikinci adımında ise, standart Çok Katmanlı Algılayıcılar (Multi-Layer Perceptron, MLP), ve Karınca Aslanı Optimizasyonu (Ant Lion Optimization, ALO) ile geliştirilmiş MLP sinir ağı olmak üzere iki farklı model geliştirilmiş ve tasarlanan ileti dizi birim hücre elemanına ait benzetim verileriyle eğitilmiştir. Modellerin performansını değerlendirmek amacıyla kök ortalama kare hata (RMSE) değerleri hesaplanmış ve her iki modelin başarısı karşılaştırılmıştır. Böylece tasarlanan birim hücreye ait tasarım parametreleri ve iletim fazı için yüksek doğruluklu bir model geliştirilmiştir. Çalışma, özellikle 5G ve sonraki nesil iletişim sistemlerinde ileti dizi birim hücre tasarımında yenilikçi ve etkili bir yaklaşım sunmakta, ayrıca yapay zeka ve meta-sezgisel optimizasyon tekniklerinin entegrasyonunun elektromanyetik yapıların tasarım sürecindeki potansiyeli ortaya koymaktadır.

References

  • [1] Aziz A, Yang F, Xu S, Li M, Chen HT. “A high-gain dual-band and dual-polarized transmitarray using novel loop elements”. IEEE Antennas and Wireless Propagation Letters, 18(6) ,1213-1217, 2019.
  • [2] Reis JR, Vala M, Caldeirinha RFS. “Review paper on transmitarray antennas”. IEEE Access, 7, 94171-94188, 2019.
  • [3] Abdelrahman AH, Yang F, Elsherbeni, AZ, Nayeri, P. Analysis and design of transmitarray antennas. San Francisco, CA, USA, Morgan& Claypool, 2017
  • [4] Malkoç M, Ünaldı S, Çimen, S. “Düşük profil mm-dalga bandı 5g uygulamaları için ileti dizi anten tasarımı”. In 5th. International Congress on Contemporary Scientific Research, (846-856), Kayseri, Turkiye, Nisan 2024.
  • [5] Yang S, Yan Z, Liu P, Li XA. “Linearly-polarized-feed dual-circularly polarized dual-beam transmitarray with ındependent beam contro”l. IEEE Antennas and Wireless Propagation Letters, 21(7), 1497-1501, 2022.
  • [6] Belen MA, Caliskan, Koziel S. et al. “Optimal design of transmitarray antennas via low-cost surrogate modelling”. Scientific Reports 13, 15044, 2023.
  • [7] Malkoç M, Ünaldı S, Çimen S. “Low-Cost Transmitarray Design with High Gain Bandwidth and Suppressed SLL”. Electronics, 14(20), 4044, 2025.
  • [8] Song L, Wang Y, Guo L. “A low-cost ultrathin metal-only transmitarray antenna at x-band,” IEEE Antennas and Wireless Propagation Letters, 23(5), 1443-1447, 2024.
  • [9] Khan MI, Loconsole AM, Anelli F, Francione VV, Khan AU, Simone M, Sorbello G, Prudenzano F. “A low-profile dual-polarized transmitarray with enhanced gain and beam steering at Ku band”. Applied Sciences 15(9), 4656, 2025.
  • [10] Goudos SK, Diamantoulakis PD, Matin MA, Sarigiannidis P, Wan S, Karagiannidis GK. “Design of antennas through artificial intelligence: State of the art and challenges”. IEEE Communication Magazine, (12), 96–102, 2022.
  • [11] Gayatri T. et al. “A review on optimization techniques of antennas using ai and ml/dl algorithms”. International Journal of Advances in Microwave Technology 7(2), 288-295,2022.
  • [12] Li H. et al. “Design of programmable transmitarray antenna with ındependent controls of transmission amplitude and phase”. IEEE Transactions on Antennas and Propagation, 70(9), 8086-8099, 2022.
  • [13] Noureddine M. et al. “Wideband transmitarray with independent phase/amplitude control for millimeter-wave vehicular sensing and communication”. AEU-International Journal of Electronics and Communications 195 (2025): 155771, 2025.
  • [14] Deng, WQ, Xu S, Xu Z, and Zhu SY. “Automated design of millimeter-wave dielectric transmitarray antenna using tandem network”. IEEE Antennas and Wireless Propagation Letters, 23(11), 3549-3553, 2024.
  • [15] Huang, Q, Leung, KW. “Transmitarray design of dielectric resonator antennas using deep learning”, In 2024 IEEE International Workshop on Antenna Technology (iWAT), Sendai, Japan, (32-35), 2024.
  • [16] Murtagh F. “Multilayer perceptrons for classification and regression”. Neurocomputing, 2(5-6), 183-197, 1991.
  • [17] Sze V, Chen, YH, Yang TJ, Emer JS. “Efficient processing of deep neural networks: A tutorial and survey”. Proceedings of the IEEE, 105(12), 2295-2329, 2017.
  • [18] Dong S, Wang P, Abbas K. “A survey on deep learning and its applications”. Computer Science Review, 40, 100379, 2021.
  • [19] Ojha VK, Abraham A, Snášel V. “Metaheuristic design of feedforward neural networks: A review of two decades of research”. Engineering Applications of Artificial Intelligence, 60, 97-116, 2017.
  • [20] Silver RA. “Neuronal arithmetic”. Nature Reviews Neuroscience, 11(7), 474-489, 2010.
  • [21] Abuqaddom I, Mahafzah BA, Faris H. “Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks without vanishing gradients”. Knowledge-Based Systems, 230, 107391, 2021.
  • [22] Singarimbun RN, Nababan EB, Sitompul OS. “Adaptive moment estimation to minimize square error in backpropagation algorithm”. In 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM) 1-7, November 2019,
  • [23] Ramchoun H, Ghanou Y, Ettaouil M, Janati Idrissi MA. “Multilayer perceptron: Architecture optimization and training”.
  • [24] Reddy BNK, Jogi S. “Design and Implementation of an FPGA-based Emulator Circuit for MLP using Memristors”. In 2024 28th International Symposium on VLSI Design and Test (VDAT) 1-6, September 2024.
  • [25] Zhang M, Wen G, Zhong J, Chen D, Wang C, Huang X, Zhang S. “MLP-like model with convolution complex transformation for auxiliary diagnosis through medical images”. IEEE Journal of Biomedical and Health Informatics, 27(9), 4385-4396, 2023.
  • [26] Hong Y, Zhang M, WQ. “Big data and reliability applications: The complexity dimension”. Journal of Quality Technology, 50(2), 135-149, 2018.
  • [27] Liu R, Li Y, Tao L, Liang D, Zheng H T. “Are we ready for a new paradigm shift? a survey on visual deep mlp”. Patterns, 3(7), 2022.
  • [28] Mirjalili S. “The ant lion optimizer”. Advances in engineering software, 83, 80-98, 2015.
  • [29] Li L, Wu WY. “Antlion algorithm based on ımmune cloning and ıts truss optimization”, 2017.
  • [30] Emary E, Zawbaa H M, Hassanien A E. “Binary ant lion approaches for feature selection”. Neurocomputing, 213, 54-65, 2016.
  • [31] Giveki D, Zaheri A, Allahyari N. “Designing CNNs with optimal architectures using antlion optimization for plant leaf recognition”. Multimedia Tools and Applications, 84(8), 4625-4654, 2025.
  • [32] Mouassa S, Bouktir T, Salhi A. “Ant lion optimizer for solving optimal reactive power dispatch problem in power systems”. Engineering science and technology, an international journal, 20(3), 885-895, 2017.
  • [33] Wang Y, Shi Q. “Spare parts closed-loop logistics network optimization problems: Model formulation and meta-heuristics solution”. IEEE Access, 7, 45048-45060, 2019.
  • [34] Karasu S, Ünaldı S. “Estimating the bandwidth of the metamaterial antenna with machine learning and feature ımportance methods”. In 4th International Scientific Research and Innovation Congress 1017-1027, December 2022.
  • [35] Özkaya U, Seyfi L, Öztürk Ş. “Dimension optimization of mullti-band microstrip antennasusing deep learning methods”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 229-233, 2021.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics
Journal Section Research Article
Authors

Seçkin Karasu

Sibel Ünaldı

Muhammed Malkoç

Early Pub Date October 31, 2025
Publication Date November 20, 2025
Submission Date August 2, 2025
Acceptance Date October 23, 2025
Published in Issue Year 2030

Cite

APA Karasu, S., Ünaldı, S., & Malkoç, M. (2025). İleti dizi birim hücre tasarımı için karınca aslanı optimizasyonu ile geliştirilmiş çok katmanlı algılayıcı modeli eğitimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. https://doi.org/10.65206/pajes.90467
AMA Karasu S, Ünaldı S, Malkoç M. İleti dizi birim hücre tasarımı için karınca aslanı optimizasyonu ile geliştirilmiş çok katmanlı algılayıcı modeli eğitimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Published online October 1, 2025. doi:10.65206/pajes.90467
Chicago Karasu, Seçkin, Sibel Ünaldı, and Muhammed Malkoç. “İleti Dizi Birim Hücre Tasarımı Için Karınca Aslanı Optimizasyonu Ile Geliştirilmiş çok Katmanlı Algılayıcı Modeli Eğitimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, October (October 2025). https://doi.org/10.65206/pajes.90467.
EndNote Karasu S, Ünaldı S, Malkoç M (October 1, 2025) İleti dizi birim hücre tasarımı için karınca aslanı optimizasyonu ile geliştirilmiş çok katmanlı algılayıcı modeli eğitimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
IEEE S. Karasu, S. Ünaldı, and M. Malkoç, “İleti dizi birim hücre tasarımı için karınca aslanı optimizasyonu ile geliştirilmiş çok katmanlı algılayıcı modeli eğitimi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, October2025, doi: 10.65206/pajes.90467.
ISNAD Karasu, Seçkin et al. “İleti Dizi Birim Hücre Tasarımı Için Karınca Aslanı Optimizasyonu Ile Geliştirilmiş çok Katmanlı Algılayıcı Modeli Eğitimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October2025. https://doi.org/10.65206/pajes.90467.
JAMA Karasu S, Ünaldı S, Malkoç M. İleti dizi birim hücre tasarımı için karınca aslanı optimizasyonu ile geliştirilmiş çok katmanlı algılayıcı modeli eğitimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025. doi:10.65206/pajes.90467.
MLA Karasu, Seçkin et al. “İleti Dizi Birim Hücre Tasarımı Için Karınca Aslanı Optimizasyonu Ile Geliştirilmiş çok Katmanlı Algılayıcı Modeli Eğitimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2025, doi:10.65206/pajes.90467.
Vancouver Karasu S, Ünaldı S, Malkoç M. İleti dizi birim hücre tasarımı için karınca aslanı optimizasyonu ile geliştirilmiş çok katmanlı algılayıcı modeli eğitimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif