Araştırma Makalesi
BibTex RIS Kaynak Göster

Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability

Yıl 2025, Cilt: 31 Sayı: 6, 1083 - 1092
https://doi.org/10.5505/pajes.2025.68338

Öz

PA6 nanofiber composite membranes are expected to be limited in their application area in the future, as they will be affected by environmental and sustainability policy sanctions due to their weak hydrophilic effects under high pressure and being hydrocarbon-based raw material. In this study, bio-based chitosan-doped PA6/CA composite nanofiber membrane surfaces were prepared using the electrospinning method. Nanofiber-structured composite membrane surfaces were prepared at different mixing ratios to improve the hydrophilic and permeability properties of the composite membranes, depending on the chitosan doping ratio. Membranes were characterized by SEM images, pore size, pore ratio, and contact angle measurements. Tensile and bursting strength and air permeability tests were performed to measure the mechanical properties of the membranes. The study was carried out using two types of water, pure and salt water, to determine the permeability and ion retention properties of the prepared membranes. The results showed that chitosan-doped PA6/CA composite structured nanofiber membrane surfaces played an important role in increasing the hydrophilicity. It was determined that depending on the chitosan additive ratio, the pore size decreased and accordingly the air permeability decreased. It was observed that there was a decrease in pure water permeability in parallel with the reduction in tensile and bursting strength. However, an increase in ion retention was observed in the study performed with salt water. All these results show that chitosan-doped PA6/CA nanofiber composite membranes can be very promising for microfiltration applications with their hydrophilic, mechanical, and permeability values.

Kaynakça

  • [1] Baker RW. “Membrane Technology and Applications”, ISBN: 9781118359693: John Wiley ve Sons Pres. California, USA. 97, 2012.
  • [2] Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T. “Electrospun nanofibrous filtration membrane”. Journal of Membrane Science, 281(1-2): 581-586, 2009.
  • [3] Hutten IM. “Handbook of nonwoven filter media”. Elsevier Publication, 2007.
  • [4] Eichhorn SJ, Sampson WW. “Statistical geometry of pores and statistics of porous nanofibrous assemblies”. Journal of the Royal Society Interface, 2(4): 309-318, 2005.
  • [5] Focarete ML, Gualandi C, Ramakrishna S. “Filtering media by electrospinning”. Springer International Publishing: Cham, Switzerland, 2018.
  • [6] Cheng X, Li T, Yan L, Jiao Y, Zhang Y, Wang K, Shao L. “Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation”. Sci. Adv., 9: eadh8195, 2023.
  • [7] Bentis A, Boukhriss A, Zahouily M, Manoun B, Gmouh S. “Functionalization of cotton fabrics by sol-gel method using ionic liquids with high-hydrophobic, excellent water repellent, oil/water separation, and self-cleaning properties”. Cellulose, 30(10): 6719-6740, 2023.
  • [8] Teng L, Yue C, Zhang G. “Epoxied SiO₂ nanoparticles and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for improved oil water separation, anti-fouling, dye and heavy metal ions removal capabilities”. Journal of Colloid and Interface Science, 630: 416-429, 2023.
  • [9] Abuhasheesh YH, Hegab HM, Wadi VS, Al Marzooqi F, Banat F, Aljundi IH, Hasan SW. “Phase inverted hydrophobic polyethersulfone/iron oxide-oleylamine ultrafiltration membranes for efficient water-in-oil emulsion separation”. Chemosphere, 337: 139431, 2023.
  • [10] Naseeb N, Mohammed AA, Laoui T, Khan Z. “A novel PAN-GO-SiO₂ hybrid membrane for separating oil and water from emulsified mixture”. Materials, 12(2): 212, 2019.
  • [11] Abushawish A, Bouaziz I, Almanassra IW, AL-Rajabi MM, Jaber L, Khalil AK, Chatla A. “Desalination pretreatment technologies: current status and future developments”. Water, 15(8): 1572, 2023.
  • [12] Akduman Ç. “PVDF electrospun nanofiber membranes for microfiltration: The effect of pore size and thickness on membrane performance”. Avrupa Bilim ve Teknoloji Dergisi, (16): 247-255, 2019.
  • [13] Zhan B, Aliabadi M, Wang G, Chen ZB, Zhou WT, Stegmaier T, Ren L. “Underwater oleophobic electrospun membrane with spindle-knotted structured fibers for oil-in-water emulsion separation”. Langmuir, 39(6): 2301-2311, 2023.
  • [14] Yang Y, Zhou B, Yu L, Song G, Ge J, Du R. “Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides”. International Journal of Biological Macromolecules, 253: 127477, 2023.
  • [15] Aygün HH. “Photochromic substance-doped PVA nanocomposite surface production and characterization: Determination of the appropriate polymer molecular weight for the electrospinning process”. Journal of the Faculty of Engineering & Architecture of Gazi University, 40(1), 2025.
  • [16] Abd Halim NS, Mohd Hizam S, Wan Suhaimi WMS, Ahmad Farid AS, Abd Rahman PNK, Wirzal MDH, Md Nordin NAH. “Nylon 6,6 waste nanofiber membrane for produced water filtration: experimental, performance modelling, optimization and techno-economic analysis”. Membranes, 13(2): 224, 2023.
  • [17] Cheng X, Li T, Yan L, Jiao Y, Zhang Y, Wang K, Shao L. “Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation”. Sci. Adv., 9: eadh8195, 2023.
  • [18] Karki HP, Kafle L, Ojha DP, Song JH, Kim HJ. “Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition”. Separation and Purification Technology, 210: 913-919, 2019.
  • [19] Li L, Bellan LM, Craighead HG, Frey MW. “Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers”. Polymer, 47(17): 6208-6217, 2006.
  • [20] Al-Rajabi MM, Haan TY. “Green extraction method of cellulose fibers from oil palm empty fruit bunches”. J. Kejuruter, 34: 851-860, 2022.
  • [21] Ju YW, Oh GY. “Behavior of toluene adsorption on activated carbon nanofibers prepared by electrospinning of a polyacrylonitrile-cellulose acetate blending solution”. Korean Journal of Chemical Engineering, 34: 2731-2737, 2015.
  • [22] Khalf A, Singarapu K, Madihally SV. “Cellulose acetate core–shell structured electrospun fiber: fabrication and characterization”. Cellulose, 22: 1389-1400, 2015.
  • [23] Özden D. “Production of chitosan nanofibers via electrospinning for filtration applications”. Erciyes Univ. Inst. Sci. Tech., 72, Kayseri, 2011.
  • [24] Gül A. “A Research On Production Of Nano-Structured Smart Membrane For Filter Applications”. Kahramanmaraş Sütçü İmam Univ. Inst. Sci. Tech., 61, Kahramanmaraş, 2022.
  • [25] Ayodele O, Okoronkwo AE, Oluwasina OO, Abe TO. “Utilization of Blue Crab Shells for the Synthesis of Chitosan Nanoparticles and Their Characterization”. Songlanakarin J. Sci. Technol, 40(5): 1043-1047, 2018.
  • [26] Yunus H, Sabı EC, İçoğlu Hİ, Yıldırım B, Gülnaz O, Topalbekiroğlu M. “Characterization and antibacterial activity of electrospun polyethylene oxide/chitosan nanofibers”. Textile and Apparel, 33(1): 1-8, 2023.
  • [27] Islam MS, McCutcheon JR, Rahaman MS. “A high flux polyvinyl acetate-coated electrospun nylon 6/SiO₂ composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance”. Journal of Membrane Science, 537: 297-309, 2017.
  • [28] Li H, Shi W, Zhang Y, Zhou R, Zhang H. “Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate”. Applied Surface Science, 346: 134-146, 2015.
  • [29] Yin J, Zhou J. “Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO₂-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application”. Desalination, 365: 46-56, 2015.
  • [30] Ghanbari M, Emadzadeh D, Lau WJ, Matsuura T, Ismail AF. “Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination”. RSC Advances, 5(27): 21268-21276, 2015.
  • [31] Li RS, Liu B, Zhou M, Zhang ZX, Wang T, Lu BA, Xie EQ. “Effect of deposition voltage on the field emission properties of electrodeposited diamond-like carbon films”. Applied Surface Science, 255(9): 4754-4757, 2009.
  • [32] Liao C, Zhao J, Yu P, Tong H, Luo Y. “Synthesis and characterization of low content of different SiO₂ materials composite poly (vinylidene fluoride) ultrafiltration membranes”. Desalination, 285: 117-122, 2012.
  • [33] Zhang H, Li S, White CJB, Ning X, Nie H, Zhu L. “Studies on electrospun nylon-6/chitosan complex nanofiber interactions”. Electrochimica Acta, 54(24): 5739-5745, 2009.
  • [34] Son WK, Youk JH, Lee TS, Park WH. “The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers polymer”. Polymer, 45(9): 2959-2966, 2004.
  • [35] Fu S, Yu Y, Wang F, Li J, Cai Z. “An antistatic agent based on polyionic liquid applied to nylon 6”. Green Chemical Engineering, 5(3): 399-407, 2024.
  • [36] Lin SJ, Hsiao WC, Jee SH, Yu HS, Tsai TF, Lai JY, Young TH. “Study on the effects of nylon–chitosan-blended membranes on the spheroid-forming activity of human melanocytes”. Biomaterials, 27(29): 5079-5088, 2006.
  • [37] Niu X, Qin M, Xu M, Zhao L, Wei Y, Hu Y, Huang D. “Coated electrospun polyamide-6/chitosan scaffold with hydroxyapatite for bone tissue engineering”. Biomedical Materials, 16(2): 025014, 2021.
  • [38] Zhou Q, Zhang J, Fang J, Li W. “The influence of nanofillers migration on the mechanical property of PA6/chitosan nanocomposites”. RSC Advances, 5(22): 16631-16639, 2015.
  • [39] Xia S, Yao L, Zhao Y, Li N, Zheng Y. “Preparation of graphene oxide-modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal”. Chemical Engineering Journal, 280: 720-727, 2015.
  • [40] Hekmati AH, Khenoussi N, Nouali H, Patarin J, Drean JY. “Effect of nanofiber diameter on water absorption properties and pore size of polyamide-6 electrospun nanoweb”. Textile Research Journal, 84(19): 2045-2055, 2014.
  • [41] Acarer S. “Multi-scale modeling of manufactured nanocomposite membranes with polymeric matrix”. Istanbul University-Cerrahpaşa Grad. Educ. Inst., İstanbul, 2020.
  • [42] Ghani M, Gharehaghaji AA, Arami M, Takhtkuse N, Rezaei B. “Fabrication of Electrospun Polyamide‐6/Chitosan Nanofibrous Membrane toward Anionic Dyes Removal”. Journal of Nanotechnology, 2014(1): 278418, 2014.
  • [43] Rana D, Matsuura T. “Surface modifications for antifouling membranes”. Chemical Reviews, 110(4): 2448-2471, 2010.
  • [44] Dotti F, Varesano A, Montarsolo A, Aluigi A, Tonin C, Mazzuchetti G. “Electrospun Porous Mats for High Efficiency Filtration”. Journal of Industrial Textiles, 37(1): 151-161, 2007.
  • [45] Waheed S, Ahmad A, Khan S, -e-Gul S, Jamil T, Islam A, Hussain T. “Synthesis, Characterization, Permeation and Antibacterial Properties of Cellulose Acetate/Polyethylene Glycol Membranes Modified with Chitosan”. Desalination, 351(1): 59–69, 2014.
  • [46] Jabur A, Abbas L, Moosa S. “Fabrication of Electrospun Chitosan/Nylon 6 Nanofibrous Membrane toward Metal Ions Removal and Antibacterial Effect”. Hindawi Publishing Corporation Advances in Materials Science and Engineering, Article ID 5810216, 1:10, 2016.

Kitosan katkılı poliamid-6/selüloz asetat (PA6/CA) nanofiber kompozit membran üretimi ve membran geçirgenliklerinin araştırılması

Yıl 2025, Cilt: 31 Sayı: 6, 1083 - 1092
https://doi.org/10.5505/pajes.2025.68338

Öz

PA6 nanolif kompozit membranların yüksek basınç altında zayıf hidrofilik etkileri ve hidrokarbon bazlı hammadde olmaları nedeniyle çevre ve sürdürülebilirlik politikası yaptırımlarından etkilenecekleri için gelecekte uygulama alanlarının sınırlı olması beklenmektedir. Bu çalışmada, biyo bazlı kitosan katkılı PA6/CA kompozit nanofiber membran yüzeyleri, elektrospinning yöntemi kullanılarak hazırlandı. Kompozit membranların hidrofilik ve geçirgenlik özelliklerini geliştirmek amacıyla kitosan katkı oranına bağlı olarak farklı karışım oranlarında nanofiber yapılı kompozit membran yüzeyleri hazırlandı. Membranlar SEM görüntüleri, gözenek boyutu, gözenek oranı ve temas açısı ölçümleriyle karakterize edildi. Membranların mekanik özelliklerini ölçmek için çekme ve patlama mukavemeti ve hava geçirgenlik testleri yapılmıştır. Çalışma, hazırlanan membranların geçirgenlik ve iyon tutma özelliklerinin belirlenmesi amacıyla saf ve tuzlu su olmak üzere iki tip su kullanılarak gerçekleştirilmiştir. Sonuçlar, kitosan katkılı PA6/CA kompozit yapılı nanofiber membran yüzeylerinin hidrofilikliğin arttırılmasında önemli bir rol oynadığını gösterdi. Kitosan katkı oranına bağlı olarak gözenek boyutunun azaldığı ve buna bağlı olarak hava geçirgenliğinin azaldığı belirlenmiştir. Çekme ve patlama mukavemetindeki azalmaya paralel olarak saf su geçirgenliğinde de azalma olduğu gözlenmiştir. Ancak tuzlu su ile yapılan çalışmada iyon tutulumunda artış gözlenmiştir. Tüm bu sonuçlar kitosan katkılı PA6/CA nanofiber kompozit membranların hidrofilik, mekanik ve geçirgenlik değerleriyle mikrofiltrasyon uygulamaları için oldukça umut verici olabileceğini göstermektedir.

Kaynakça

  • [1] Baker RW. “Membrane Technology and Applications”, ISBN: 9781118359693: John Wiley ve Sons Pres. California, USA. 97, 2012.
  • [2] Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T. “Electrospun nanofibrous filtration membrane”. Journal of Membrane Science, 281(1-2): 581-586, 2009.
  • [3] Hutten IM. “Handbook of nonwoven filter media”. Elsevier Publication, 2007.
  • [4] Eichhorn SJ, Sampson WW. “Statistical geometry of pores and statistics of porous nanofibrous assemblies”. Journal of the Royal Society Interface, 2(4): 309-318, 2005.
  • [5] Focarete ML, Gualandi C, Ramakrishna S. “Filtering media by electrospinning”. Springer International Publishing: Cham, Switzerland, 2018.
  • [6] Cheng X, Li T, Yan L, Jiao Y, Zhang Y, Wang K, Shao L. “Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation”. Sci. Adv., 9: eadh8195, 2023.
  • [7] Bentis A, Boukhriss A, Zahouily M, Manoun B, Gmouh S. “Functionalization of cotton fabrics by sol-gel method using ionic liquids with high-hydrophobic, excellent water repellent, oil/water separation, and self-cleaning properties”. Cellulose, 30(10): 6719-6740, 2023.
  • [8] Teng L, Yue C, Zhang G. “Epoxied SiO₂ nanoparticles and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for improved oil water separation, anti-fouling, dye and heavy metal ions removal capabilities”. Journal of Colloid and Interface Science, 630: 416-429, 2023.
  • [9] Abuhasheesh YH, Hegab HM, Wadi VS, Al Marzooqi F, Banat F, Aljundi IH, Hasan SW. “Phase inverted hydrophobic polyethersulfone/iron oxide-oleylamine ultrafiltration membranes for efficient water-in-oil emulsion separation”. Chemosphere, 337: 139431, 2023.
  • [10] Naseeb N, Mohammed AA, Laoui T, Khan Z. “A novel PAN-GO-SiO₂ hybrid membrane for separating oil and water from emulsified mixture”. Materials, 12(2): 212, 2019.
  • [11] Abushawish A, Bouaziz I, Almanassra IW, AL-Rajabi MM, Jaber L, Khalil AK, Chatla A. “Desalination pretreatment technologies: current status and future developments”. Water, 15(8): 1572, 2023.
  • [12] Akduman Ç. “PVDF electrospun nanofiber membranes for microfiltration: The effect of pore size and thickness on membrane performance”. Avrupa Bilim ve Teknoloji Dergisi, (16): 247-255, 2019.
  • [13] Zhan B, Aliabadi M, Wang G, Chen ZB, Zhou WT, Stegmaier T, Ren L. “Underwater oleophobic electrospun membrane with spindle-knotted structured fibers for oil-in-water emulsion separation”. Langmuir, 39(6): 2301-2311, 2023.
  • [14] Yang Y, Zhou B, Yu L, Song G, Ge J, Du R. “Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides”. International Journal of Biological Macromolecules, 253: 127477, 2023.
  • [15] Aygün HH. “Photochromic substance-doped PVA nanocomposite surface production and characterization: Determination of the appropriate polymer molecular weight for the electrospinning process”. Journal of the Faculty of Engineering & Architecture of Gazi University, 40(1), 2025.
  • [16] Abd Halim NS, Mohd Hizam S, Wan Suhaimi WMS, Ahmad Farid AS, Abd Rahman PNK, Wirzal MDH, Md Nordin NAH. “Nylon 6,6 waste nanofiber membrane for produced water filtration: experimental, performance modelling, optimization and techno-economic analysis”. Membranes, 13(2): 224, 2023.
  • [17] Cheng X, Li T, Yan L, Jiao Y, Zhang Y, Wang K, Shao L. “Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation”. Sci. Adv., 9: eadh8195, 2023.
  • [18] Karki HP, Kafle L, Ojha DP, Song JH, Kim HJ. “Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition”. Separation and Purification Technology, 210: 913-919, 2019.
  • [19] Li L, Bellan LM, Craighead HG, Frey MW. “Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers”. Polymer, 47(17): 6208-6217, 2006.
  • [20] Al-Rajabi MM, Haan TY. “Green extraction method of cellulose fibers from oil palm empty fruit bunches”. J. Kejuruter, 34: 851-860, 2022.
  • [21] Ju YW, Oh GY. “Behavior of toluene adsorption on activated carbon nanofibers prepared by electrospinning of a polyacrylonitrile-cellulose acetate blending solution”. Korean Journal of Chemical Engineering, 34: 2731-2737, 2015.
  • [22] Khalf A, Singarapu K, Madihally SV. “Cellulose acetate core–shell structured electrospun fiber: fabrication and characterization”. Cellulose, 22: 1389-1400, 2015.
  • [23] Özden D. “Production of chitosan nanofibers via electrospinning for filtration applications”. Erciyes Univ. Inst. Sci. Tech., 72, Kayseri, 2011.
  • [24] Gül A. “A Research On Production Of Nano-Structured Smart Membrane For Filter Applications”. Kahramanmaraş Sütçü İmam Univ. Inst. Sci. Tech., 61, Kahramanmaraş, 2022.
  • [25] Ayodele O, Okoronkwo AE, Oluwasina OO, Abe TO. “Utilization of Blue Crab Shells for the Synthesis of Chitosan Nanoparticles and Their Characterization”. Songlanakarin J. Sci. Technol, 40(5): 1043-1047, 2018.
  • [26] Yunus H, Sabı EC, İçoğlu Hİ, Yıldırım B, Gülnaz O, Topalbekiroğlu M. “Characterization and antibacterial activity of electrospun polyethylene oxide/chitosan nanofibers”. Textile and Apparel, 33(1): 1-8, 2023.
  • [27] Islam MS, McCutcheon JR, Rahaman MS. “A high flux polyvinyl acetate-coated electrospun nylon 6/SiO₂ composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance”. Journal of Membrane Science, 537: 297-309, 2017.
  • [28] Li H, Shi W, Zhang Y, Zhou R, Zhang H. “Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate”. Applied Surface Science, 346: 134-146, 2015.
  • [29] Yin J, Zhou J. “Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO₂-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application”. Desalination, 365: 46-56, 2015.
  • [30] Ghanbari M, Emadzadeh D, Lau WJ, Matsuura T, Ismail AF. “Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination”. RSC Advances, 5(27): 21268-21276, 2015.
  • [31] Li RS, Liu B, Zhou M, Zhang ZX, Wang T, Lu BA, Xie EQ. “Effect of deposition voltage on the field emission properties of electrodeposited diamond-like carbon films”. Applied Surface Science, 255(9): 4754-4757, 2009.
  • [32] Liao C, Zhao J, Yu P, Tong H, Luo Y. “Synthesis and characterization of low content of different SiO₂ materials composite poly (vinylidene fluoride) ultrafiltration membranes”. Desalination, 285: 117-122, 2012.
  • [33] Zhang H, Li S, White CJB, Ning X, Nie H, Zhu L. “Studies on electrospun nylon-6/chitosan complex nanofiber interactions”. Electrochimica Acta, 54(24): 5739-5745, 2009.
  • [34] Son WK, Youk JH, Lee TS, Park WH. “The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers polymer”. Polymer, 45(9): 2959-2966, 2004.
  • [35] Fu S, Yu Y, Wang F, Li J, Cai Z. “An antistatic agent based on polyionic liquid applied to nylon 6”. Green Chemical Engineering, 5(3): 399-407, 2024.
  • [36] Lin SJ, Hsiao WC, Jee SH, Yu HS, Tsai TF, Lai JY, Young TH. “Study on the effects of nylon–chitosan-blended membranes on the spheroid-forming activity of human melanocytes”. Biomaterials, 27(29): 5079-5088, 2006.
  • [37] Niu X, Qin M, Xu M, Zhao L, Wei Y, Hu Y, Huang D. “Coated electrospun polyamide-6/chitosan scaffold with hydroxyapatite for bone tissue engineering”. Biomedical Materials, 16(2): 025014, 2021.
  • [38] Zhou Q, Zhang J, Fang J, Li W. “The influence of nanofillers migration on the mechanical property of PA6/chitosan nanocomposites”. RSC Advances, 5(22): 16631-16639, 2015.
  • [39] Xia S, Yao L, Zhao Y, Li N, Zheng Y. “Preparation of graphene oxide-modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal”. Chemical Engineering Journal, 280: 720-727, 2015.
  • [40] Hekmati AH, Khenoussi N, Nouali H, Patarin J, Drean JY. “Effect of nanofiber diameter on water absorption properties and pore size of polyamide-6 electrospun nanoweb”. Textile Research Journal, 84(19): 2045-2055, 2014.
  • [41] Acarer S. “Multi-scale modeling of manufactured nanocomposite membranes with polymeric matrix”. Istanbul University-Cerrahpaşa Grad. Educ. Inst., İstanbul, 2020.
  • [42] Ghani M, Gharehaghaji AA, Arami M, Takhtkuse N, Rezaei B. “Fabrication of Electrospun Polyamide‐6/Chitosan Nanofibrous Membrane toward Anionic Dyes Removal”. Journal of Nanotechnology, 2014(1): 278418, 2014.
  • [43] Rana D, Matsuura T. “Surface modifications for antifouling membranes”. Chemical Reviews, 110(4): 2448-2471, 2010.
  • [44] Dotti F, Varesano A, Montarsolo A, Aluigi A, Tonin C, Mazzuchetti G. “Electrospun Porous Mats for High Efficiency Filtration”. Journal of Industrial Textiles, 37(1): 151-161, 2007.
  • [45] Waheed S, Ahmad A, Khan S, -e-Gul S, Jamil T, Islam A, Hussain T. “Synthesis, Characterization, Permeation and Antibacterial Properties of Cellulose Acetate/Polyethylene Glycol Membranes Modified with Chitosan”. Desalination, 351(1): 59–69, 2014.
  • [46] Jabur A, Abbas L, Moosa S. “Fabrication of Electrospun Chitosan/Nylon 6 Nanofibrous Membrane toward Metal Ions Removal and Antibacterial Effect”. Hindawi Publishing Corporation Advances in Materials Science and Engineering, Article ID 5810216, 1:10, 2016.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Bilimleri ve Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abdullah Gül Bu kişi benim

İsmail Tiyek

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 13 Kasım 2025
Gönderilme Tarihi 3 Aralık 2024
Kabul Tarihi 11 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 6

Kaynak Göster

APA Gül, A., & Tiyek, İ. (2025). Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 1083-1092. https://doi.org/10.5505/pajes.2025.68338
AMA Gül A, Tiyek İ. Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(6):1083-1092. doi:10.5505/pajes.2025.68338
Chicago Gül, Abdullah, ve İsmail Tiyek. “Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 6 (Kasım 2025): 1083-92. https://doi.org/10.5505/pajes.2025.68338.
EndNote Gül A, Tiyek İ (01 Kasım 2025) Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 6 1083–1092.
IEEE A. Gül ve İ. Tiyek, “Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, ss. 1083–1092, 2025, doi: 10.5505/pajes.2025.68338.
ISNAD Gül, Abdullah - Tiyek, İsmail. “Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/6 (Kasım2025), 1083-1092. https://doi.org/10.5505/pajes.2025.68338.
JAMA Gül A, Tiyek İ. Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:1083–1092.
MLA Gül, Abdullah ve İsmail Tiyek. “Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, 2025, ss. 1083-92, doi:10.5505/pajes.2025.68338.
Vancouver Gül A, Tiyek İ. Production of nanofiber composite membrane from chitosan added polyamide-6/cellulose acetate (PA6/CA) and investigation of membrane permeability. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(6):1083-92.