Araştırma Makalesi
BibTex RIS Kaynak Göster

A flexible and reusable framework for Bitcoin blockchain and price data

Yıl 2026, Cilt: 32 Sayı: 2

Öz

Driven by the potential for high returns and financial innovation, the cryptocurrency market is seeing a rapid increase in the number of investors and market value. Unlike other financial assets, cryptocurrencies have a transparent and accessible data structure that makes it possible to examine the relationships between price movements and on-chain metrics. This growing interest, as well as the transparent and accessible structure, is leading to a parallel increase in academic studies focused on analyzing the price dynamics of Bitcoin, the world’s first widely accepted cryptocurrency, and the underlying factors by examining Bitcoin blockchain data and developing predictive models. The current literature generally relies on data collected at limited, fixed time intervals on a daily basis. However, the daily and fixed data sets of the cryptocurrency market in the literature become outdated over time and are not sufficient to analyze instantaneous price movements. This poses a significant limitation when analyzing cryptocurrency markets, which are highly volatile and require a focus on rapid price fluctuations and immediate market changes. For detailed analysis, investors and researchers increasingly require data at a higher frequency than daily. In this study, a framework is designed and developed that allows users to obtain Bitcoin blocks and price data for any desired time period and interval. In this way, a comprehensive, upto-date and flexible framework is offered that can serve various research areas, such as machine learning-based predictions, testing algorithmic trading strategies, investigating correlations between the blockchain and price fluctuations, performing market analysis or detecting anomalies. In addition, various frequency aggregations were defined using the framework developed in this study. In particular, a 10- minute time interval was analyzed based on the average time it takes to generate a Bitcoin block. In this way, a direct and consistent relationship between block information and price movements could be established.

Kaynakça

  • [1] Glas T. Digital Assets. In: Asset Pricing and Investment Styles in Digital Assets. Advanced Studies in Diginomics and Digitalization, Cham, Switzerland, Springer, 2022. (https://doi.org/10.1007/978-3-030-95695-0_5)
  • [2] Van der Laan J. Understanding Blockchain. Editors: Artzt M, Richter T. International Handbook of Blockchain Law: A Guide to Navigating Legal and Regulatory Challenges of Blockchain Technology and Crypto Assets, Holland, Wolters Kluwer Press, 2024.
  • [3] Ducas E, Wilner A. “The security and financial implications of blockchain technologies: Regulating emerging technologies in Canada”. International Journal: Canada’s Journal of Global Policy Analysis, 72(4), 538–562, 2017. (https://doi.org/10.1177/0020702017741909)
  • [4] Narayanan A, Bonneau J, Felten E, Miller A, Goldfeder S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton, USA, Princeton University Press, 2016.
  • [5] Gao Q, Zhang J. Blockchain and the Transformation of Global Economic Governance. In: Artificial Intelligence Governance and the Blockchain Revolution. Artificial Intelligence and the Rule of Law, Singapore, Springer, 2024. (https://doi.org/10.1007/978-981-99-9211-9_4)
  • [6] Ghimire S, Selvaraj H. “A survey on Bitcoin cryptocurrency and its mining”. 2018 26th International Conference on Systems Engineering (ICSEng), Sydney, NSW, Australia, 1–6, 2018. (https://doi.org/10.1109/ICSENG.2018.8638208)
  • [7] Adjei F. “Determinants of Bitcoin expected returns”. Journal of Finance and Economics, 7(1), 42-47 , 2019.
  • [8] Arslanian H. Bitcoin. In: The Book of Crypto, Cham, Switzerland, Palgrave Macmillan, 2022. (https://doi.org/10.1007/978-3-030-97951-5_2)
  • [9] Li J, Zhang C, Zhang J, Shao Y. “Research on blockchain transaction privacy protection methods based on deep learning”. Future Internet, 16(4), 113, 2024.
  • [10] Roy S, Nanjiba S, Chakrabarty A. “Bitcoin price forecasting using time series analysis”. 21st IEEE International Conference of Computer and Information Technology (ICCIT), 1–5, 2018.
  • [11] Ibrahim A, Kashef R, Corrigan L. “Predicting market movement direction for bitcoin: a comparison of time series modeling methods”. Computers & Electrical Engineering, 89, 106905, 2021.
  • [12] McNally S, Roche J, Caton S. “Predicting the price of bitcoin using machine learning”. 26th IEEE Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 339–343, 2018.
  • [13] Atsalakis GS, Atsalaki IG, Pasiouras F, Zopounidis C. “Bitcoin price forecasting with neuro-fuzzy techniques”. European Journal of Operational Research, 276(2), 770–780, 2019.
  • [14] Patel R, Chauhan J, Tiwari NK, et al. “A deep learning framework for hourly Bitcoin price prediction using bi-LSTM and sentiment analysis of Twitter data”. SN Computer Science, 5, 767, 2024. (https://doi.org/10.1007/s42979-024-03112-9)
  • [15] Akcora CG, Dey AK, Gel YR, Kantarcioglu M. Forecasting Bitcoin Price with Graph Chainlets. Editors: Phung D, Tseng V, Webb G, Ho B, Ganji M, Rashidi L. Advances in Knowledge Discovery and Data Mining. PAKDD 2018 (Lecture Notes in Computer Science, 10939), 765–776, Cham, Switzerland, Springer, 2018. (https://doi.org/10.1007/978-3-319-93040-4_60)
  • [16] Guo T, Antulov-Fantulin N. “Predicting short-term Bitcoin price fluctuations from buy and sell orders”. arXiv:1802.04065, 2018.
  • [17] Kaggle. “BTCinUSD dataset”. https://www.kaggle.com/ datasets/prasoonkottarathil/btcinusd (18.12.2024).
  • [18] Chen X, Hu W, Xue L. “Stock price prediction using candlestick patterns and sparrow search algorithm”. Electronics, 13(4), 771, 2024. (https://doi.org/10.3390/electronics13040771)

Bitcoin blok zinciri ve fiyat verileri için esnek ve yeniden kullanılabilir bir çerçeve

Yıl 2026, Cilt: 32 Sayı: 2

Öz

Yüksek getiri potansiyeli ve finansal inovasyondan kaynaklanan ilgi, kripto para piyasasının yatırımcı sayısında ve piyasa değerinde hızlı bir artışa neden olmaktadır. Diğer finansal varlıklardan farklı olarak, kripto paralar fiyat hareketleri ile zincir içi (on-chain) metrikler arasındaki ilişkileri incelemeyi mümkün kılan şeffaf ve erişilebilir bir veri yapısına sahiptir. Bu artan ilgi ve şeffaf, erişilebilir yapı, Bitcoin blok zinciri verilerini inceleyen ve fiyat dinamiklerini analiz edip tahmin modelleri geliştiren akademik çalışmalarda da paralel bir büyümeye yol açmaktadır. Mevcut literatürde veriler genellikle günlük bazda ve sabit zaman aralıklarında toplanmakta, ancak kripto para piyasasındaki günlük ve sabit veri setleri zamanla güncelliğini yitirmekte ve anlık fiyat hareketlerini analiz etmek için yeterli olmamaktadır. Bu durum, yüksek volatiliteye sahip kripto para piyasalarında hızlı fiyat dalgalanmaları ve ani piyasa değişikliklerine odaklanmayı zorunlu kılan analizler için önemli bir sınırlamadır. Daha detaylı analiz yapabilmek için, yatırımcılar ve araştırmacılar giderek günlük düzeyin üzerinde bir veri sıklığına ihtiyaç duymaktadır. Bu çalışmada, kullanıcıların istedikleri herhangi bir zaman aralığı ve periyotta Bitcoin blok ve fiyat verilerine ulaşmasını sağlayan bir çerçeve tasarlanmış ve geliştirilmiştir. Bu sayede makine öğrenmesi tabanlı tahminler, algoritmik alım-satım stratejilerinin test edilmesi, blok zinciri ile fiyat dalgalanmaları arasındaki ilişkilerin incelenmesi, piyasa analizleri veya anormallik tespiti gibi çeşitli araştırma alanlarına hizmet edebilecek kapsamlı, güncel ve esnek bir çerçeve sunulmaktadır. Ayrıca bu çalışmada geliştirilen çerçeveyle birlikte farklı frekanslarda veri toplulaştırmaları da tanımlanmıştır. Özellikle bir Bitcoin bloğunun ortalama üretim süresi olan 10 dakikalık zaman aralığı temel alınarak yapılan analiz, blok bilgilerinin fiyat hareketleriyle doğrudan ve tutarlı bir şekilde ilişkilendirilmesine olanak sağlamaktadır.

Kaynakça

  • [1] Glas T. Digital Assets. In: Asset Pricing and Investment Styles in Digital Assets. Advanced Studies in Diginomics and Digitalization, Cham, Switzerland, Springer, 2022. (https://doi.org/10.1007/978-3-030-95695-0_5)
  • [2] Van der Laan J. Understanding Blockchain. Editors: Artzt M, Richter T. International Handbook of Blockchain Law: A Guide to Navigating Legal and Regulatory Challenges of Blockchain Technology and Crypto Assets, Holland, Wolters Kluwer Press, 2024.
  • [3] Ducas E, Wilner A. “The security and financial implications of blockchain technologies: Regulating emerging technologies in Canada”. International Journal: Canada’s Journal of Global Policy Analysis, 72(4), 538–562, 2017. (https://doi.org/10.1177/0020702017741909)
  • [4] Narayanan A, Bonneau J, Felten E, Miller A, Goldfeder S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton, USA, Princeton University Press, 2016.
  • [5] Gao Q, Zhang J. Blockchain and the Transformation of Global Economic Governance. In: Artificial Intelligence Governance and the Blockchain Revolution. Artificial Intelligence and the Rule of Law, Singapore, Springer, 2024. (https://doi.org/10.1007/978-981-99-9211-9_4)
  • [6] Ghimire S, Selvaraj H. “A survey on Bitcoin cryptocurrency and its mining”. 2018 26th International Conference on Systems Engineering (ICSEng), Sydney, NSW, Australia, 1–6, 2018. (https://doi.org/10.1109/ICSENG.2018.8638208)
  • [7] Adjei F. “Determinants of Bitcoin expected returns”. Journal of Finance and Economics, 7(1), 42-47 , 2019.
  • [8] Arslanian H. Bitcoin. In: The Book of Crypto, Cham, Switzerland, Palgrave Macmillan, 2022. (https://doi.org/10.1007/978-3-030-97951-5_2)
  • [9] Li J, Zhang C, Zhang J, Shao Y. “Research on blockchain transaction privacy protection methods based on deep learning”. Future Internet, 16(4), 113, 2024.
  • [10] Roy S, Nanjiba S, Chakrabarty A. “Bitcoin price forecasting using time series analysis”. 21st IEEE International Conference of Computer and Information Technology (ICCIT), 1–5, 2018.
  • [11] Ibrahim A, Kashef R, Corrigan L. “Predicting market movement direction for bitcoin: a comparison of time series modeling methods”. Computers & Electrical Engineering, 89, 106905, 2021.
  • [12] McNally S, Roche J, Caton S. “Predicting the price of bitcoin using machine learning”. 26th IEEE Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 339–343, 2018.
  • [13] Atsalakis GS, Atsalaki IG, Pasiouras F, Zopounidis C. “Bitcoin price forecasting with neuro-fuzzy techniques”. European Journal of Operational Research, 276(2), 770–780, 2019.
  • [14] Patel R, Chauhan J, Tiwari NK, et al. “A deep learning framework for hourly Bitcoin price prediction using bi-LSTM and sentiment analysis of Twitter data”. SN Computer Science, 5, 767, 2024. (https://doi.org/10.1007/s42979-024-03112-9)
  • [15] Akcora CG, Dey AK, Gel YR, Kantarcioglu M. Forecasting Bitcoin Price with Graph Chainlets. Editors: Phung D, Tseng V, Webb G, Ho B, Ganji M, Rashidi L. Advances in Knowledge Discovery and Data Mining. PAKDD 2018 (Lecture Notes in Computer Science, 10939), 765–776, Cham, Switzerland, Springer, 2018. (https://doi.org/10.1007/978-3-319-93040-4_60)
  • [16] Guo T, Antulov-Fantulin N. “Predicting short-term Bitcoin price fluctuations from buy and sell orders”. arXiv:1802.04065, 2018.
  • [17] Kaggle. “BTCinUSD dataset”. https://www.kaggle.com/ datasets/prasoonkottarathil/btcinusd (18.12.2024).
  • [18] Chen X, Hu W, Xue L. “Stock price prediction using candlestick patterns and sparrow search algorithm”. Electronics, 13(4), 771, 2024. (https://doi.org/10.3390/electronics13040771)
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgi Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Vasfi Tataroğlu

Gürhan Gündüz 0000-0002-0719-2688

Sezai Tokat 0000-0003-0193-8220

Hasan Bulut 0000-0002-4872-5698

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 8 Kasım 2025
Gönderilme Tarihi 1 Şubat 2025
Kabul Tarihi 18 Temmuz 2025
Yayımlandığı Sayı Yıl 2026 Cilt: 32 Sayı: 2

Kaynak Göster

APA Tataroğlu, V., Gündüz, G., Tokat, S., Bulut, H. (2025). A flexible and reusable framework for Bitcoin blockchain and price data. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(2). https://doi.org/10.5505/pajes.2025.26511
AMA Tataroğlu V, Gündüz G, Tokat S, Bulut H. A flexible and reusable framework for Bitcoin blockchain and price data. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;32(2). doi:10.5505/pajes.2025.26511
Chicago Tataroğlu, Vasfi, Gürhan Gündüz, Sezai Tokat, ve Hasan Bulut. “A flexible and reusable framework for Bitcoin blockchain and price data”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, sy. 2 (Kasım 2025). https://doi.org/10.5505/pajes.2025.26511.
EndNote Tataroğlu V, Gündüz G, Tokat S, Bulut H (01 Kasım 2025) A flexible and reusable framework for Bitcoin blockchain and price data. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 2
IEEE V. Tataroğlu, G. Gündüz, S. Tokat, ve H. Bulut, “A flexible and reusable framework for Bitcoin blockchain and price data”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 32, sy. 2, 2025, doi: 10.5505/pajes.2025.26511.
ISNAD Tataroğlu, Vasfi vd. “A flexible and reusable framework for Bitcoin blockchain and price data”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/2 (Kasım2025). https://doi.org/10.5505/pajes.2025.26511.
JAMA Tataroğlu V, Gündüz G, Tokat S, Bulut H. A flexible and reusable framework for Bitcoin blockchain and price data. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.26511.
MLA Tataroğlu, Vasfi vd. “A flexible and reusable framework for Bitcoin blockchain and price data”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 32, sy. 2, 2025, doi:10.5505/pajes.2025.26511.
Vancouver Tataroğlu V, Gündüz G, Tokat S, Bulut H. A flexible and reusable framework for Bitcoin blockchain and price data. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(2).





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.