Research Article
BibTex RIS Cite

Adaptive multi-level wavelet decomposition for efficient image compression

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.72279

Abstract

Image compression is a crucial technique for reducing storage requirements and improving transmission efficiency of digital images, especially given the ever-increasing volume of image data. However, conventional lossy compression methods such as JPEG and JPEG2000 often introduce significant quality degradation, particularly when compressing highly detailed images. This study presents an optimized wavelet transform-based image compression method designed to minimize information loss while maximizing compression efficiency. The proposed method integrates adaptive thresholding, the selection of optimized wavelet functions, and multi-level wavelet decomposition to address the limitations of traditional approaches. Specifically, adaptive thresholding is used to dynamically adjust compression parameters, reducing unnecessary data retention, while the wavelet function selection process ensures the most suitable basis for image features. Multi-level wavelet decomposition enables the retention of important image details across various resolution scales, improving compression without compromising visual quality. The performance of the proposed method is evaluated on several image types, including well-known test images, and compared against standard image compression techniques such as JPEG and JPEG2000. Experimental results show that the proposed method outperforms the conventional methods in terms of both compression ratio and image quality preservation, achieving higher Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) scores. The proposed approach is particularly effective for applications requiring high-quality image storage and transmission, such as medical imaging, satellite imagery, and multimedia communication.

References

  • [1] Wallace GK. "The JPEG still picture compression standard". Communications of the ACM, 34(4), 30–44, 1992.
  • [2] Taubman D, Marcellin M. JPEG2000: Image Compression Fundamentals, Standards and Practice. Springer, 2002.
  • [3] Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2009.
  • [4] Donoho DL, Johnstone, IM. "Adapting to unknown smoothness via wavelet shrinkage". Journal of the American Statistical Association, 90(432), 1200–1224, 1995.
  • [5] Chang SG, Yu B, Vetterli, M. "Adaptive wavelet thresholding for image denoising and compression". IEEE Transactions on Image Processing, 9(9), 1532–1546, 2000.
  • [6] Liu X, Zhang L, Zhang D. "Deep wavelet compression: learning wavelet coefficients for image compression". IEEE Transactions on Image Processing, 30, 2856–2868, 2021.
  • [7] Fan Y, Xia Y. "SURE-based adaptive wavelet thresholding for efficient image compression". Signal Processing: Image Communication, 85, 115876, 2020.
  • [8] Rattarangsi A, Bovik AC. "Sparse wavelet thresholding for improved image compression". IEEE Access, 10, 56874–56890, 2022.
  • [9] Li K, Li X, Guo Z. "Hybrid wavelet-deep learning model for efficient image compression". Neural Computing and Applications, 35, 4237–4251, 2023.
  • [10] Zhang Y, Zhang W, Zhang, H. "Wavelet-based image compression with deep learning optimization". IEEE Transactions on Multimedia, 26, 1025–1038, 2024.
  • [11] Gao Y, Zhou M, Liu D, Yan Z, Zhang S, Metaxas DN. ‘’A data-scalable transformer for medical image segmentation: architecture, model efficiency, and benchmark’’. arXiv preprint arXiv:2203.00131, 2022.
  • [12] Roy S, Koehler G, Ulrich C, Baumgartner M, Petersen J, Isensee F, Maier-Hein KH. ‘’Mednext: transformer-driven scaling of convnets for medical image segmentation’’. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland; pp. 405–415, 2023.
  • [13] Li W, Feng C, Yu K, Zhao D. ‘’MISS-D: a fast and scalable framework of medical image storage service based on distributed file system’’. Comput Methods Programs Biomed. 186, 105189, 2020.
  • [14] Malayil MV, Vedhanayagam M. ‘’A novel image scaling based reversible watermarking scheme for secure medical image transmission’’. ISA Trans., 108, 269–81, 2021.
  • [15] Padhy S, Dash S, Shankar TN, Rachapudi V, Kumar S, Nayyar A. ‘’A hybrid crypto-compression model for secure brain mri image transmission’’. Multimedia Tools Appl. 83(8), 24361–81, 2024.
  • [16] Xue X, Marappan R, Raju SK, Raghavan R, Rajan R, Khalaf OI, Abdulsahib GM. ‘’Modelling and analysis of hybrid transformation for lossless big medical image compression’’. Bioengineering, 10(3), 333, 2023.
  • [17] Reddy VP, Prasad RM, Udayaraju P, Naik BH, Raja C. ‘’Efficient medical image security and transmission using modified LZW compression and ECDH-AES for telemedicine applications’’. Soft Computing Fusion Found Methodologies Appl. 27(13), 2023.
  • [18] Zhou D, Cai Z, He D. ‘’A new biorthogonal spline wavelet-based k-layer network for underwater image enhancement’’. Mathematics, 12(9), 1366, 2024.
  • [19] Wang L, Sun, Y. "Improved Canny edge detection algorithm". 2021 2nd International Conference on Computer Science and Management Technology (ICCSMT), Shanghai, China, pp. 414-417, 2021.
  • [20] Jin Y, Li Z, Tian Y, Wei X, Liu C. ‘’A novel interpretable multilevel wavelet decomposition deep network for actual heartbeat classification’’. Sci. China Technol. Sci. 67, 1842–1854, 2024.
  • [21] Eulig E, Ommer B, Kachelrieß M. ‘’Benchmarking deep learning-based low-dose CT image denoising algorithms’’. The International Journal of Medical Physics Research and Practice, 51(12), 8776-8788, 2024.
  • [22] Dziembowski A, Nowak W, Stankowski J. ‘’IV-SSIM—The structural similarity metric for immersive video’’. Applied Sciences, 14(16), 7090, 2024.
  • [23] Durdu A. ‘’24-bit renkli imge içine 24-bit renkli imge gizleyen yüksek kapasiteli düşük bozulumlu tersinir kayıplı yeni bir veri gizleme yöntemi (YKKG)’’. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 96-113, 2021.
  • [24] Mishra J, Kumar V. "Study of digital image compression techniques and framework for suitability selection based on similarity measuring metrics," 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, pp. 1-6, 2024.
  • [25] Can E, Karaca AC, Urhan O, Güllü MK. ‘’Compression of hyperspectral images using automatic adaptive luminance transform and 3D-DCT method’’. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 868-883, 2020.
  • [26] Ince IF, Bulut F, Kilic I, Yildirim ME, Ince OF.‘’Low dynamic range discrete cosine transform (LDR-DCT) for high-performance JPEG image compression’’. The Visual Computer, 38(5), 1845-1870, 2022.
  • [27] Bulut F, Ince IF. ‘’Iterative histogram equalization using discrete wavelet transform in low-dynamic range’’. Journal of Electronic Imaging, 32(2), 023034-023034, 2023.

Etkin görüntü sıkıştırma için adaptif çok seviyeli dalgacık dönüşümü yöntemi

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.72279

Abstract

Görüntü sıkıştırma, özellikle görüntü verilerinin giderek artan hacmi göz önüne alındığında dijital görüntülerin depolama gereksinimlerini azaltmak ve iletim verimliliğini artırmak amacıyla kullanılan kritik bir tekniktir. Ancak, JPEG ve JPEG2000 gibi geleneksel kayıplı sıkıştırma yöntemleri, özellikle yüksek detaylı görüntüleri sıkıştırırken önemli kalite bozulmalarına yol açar. Bu çalışma, bilgi kaybını minimize ederken sıkıştırma verimliliğini maksimize etmek amacıyla optimize edilmiş bir dalgacık dönüşümü tabanlı görüntü sıkıştırma yöntemi sunmaktadır. Önerilen yöntem, geleneksel yaklaşımların sınırlamalarını aşmak için adaptif eşikleme, optimize edilmiş dalgacık fonksiyonları seçimi ve çok seviyeli dalgacık dekompozisyonunu entegre etmektedir. Özellikle, adaptif eşikleme, sıkıştırma parametrelerini dinamik olarak ayarlamak için kullanılarak, gereksiz veri saklamayı azaltırken, dalgacık fonksiyonu seçimi, görüntü özellikleri için en uygun temeli sağlamaktadır. Çok seviyeli dalgacık dekompozisyonu, çeşitli çözünürlük ölçeklerinde önemli görüntü detaylarının korunmasını sağlayarak görsel kaliteyi bozmadan sıkıştırmayı iyileştirir. Önerilen yöntemin performansı, iyi bilinen test görüntüleri üzerinde değerlendirilmiş ve JPEG ve JPEG2000 gibi standart görüntü sıkıştırma teknikleriyle karşılaştırılmıştır. Deneysel sonuçlar, önerilen yönteminin hem sıkıştırma oranı hem de görüntü kalitesinin korunması açısından geleneksel yöntemleri geride bıraktığını, daha yüksek Tepe SinyalGürültü Oranı (PSNR) ve Yapısal Benzerlik Endeksi (SSIM) puanları elde ettiğini göstermektedir. Önerilen yaklaşım, yüksek kaliteli görüntü depolama ve iletimi gerektiren uygulamalarda, örneğin tıbbi görüntüleme, uydu görüntülemesi ve multimedya iletişimi gibi alanlarda etkilidir.

References

  • [1] Wallace GK. "The JPEG still picture compression standard". Communications of the ACM, 34(4), 30–44, 1992.
  • [2] Taubman D, Marcellin M. JPEG2000: Image Compression Fundamentals, Standards and Practice. Springer, 2002.
  • [3] Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2009.
  • [4] Donoho DL, Johnstone, IM. "Adapting to unknown smoothness via wavelet shrinkage". Journal of the American Statistical Association, 90(432), 1200–1224, 1995.
  • [5] Chang SG, Yu B, Vetterli, M. "Adaptive wavelet thresholding for image denoising and compression". IEEE Transactions on Image Processing, 9(9), 1532–1546, 2000.
  • [6] Liu X, Zhang L, Zhang D. "Deep wavelet compression: learning wavelet coefficients for image compression". IEEE Transactions on Image Processing, 30, 2856–2868, 2021.
  • [7] Fan Y, Xia Y. "SURE-based adaptive wavelet thresholding for efficient image compression". Signal Processing: Image Communication, 85, 115876, 2020.
  • [8] Rattarangsi A, Bovik AC. "Sparse wavelet thresholding for improved image compression". IEEE Access, 10, 56874–56890, 2022.
  • [9] Li K, Li X, Guo Z. "Hybrid wavelet-deep learning model for efficient image compression". Neural Computing and Applications, 35, 4237–4251, 2023.
  • [10] Zhang Y, Zhang W, Zhang, H. "Wavelet-based image compression with deep learning optimization". IEEE Transactions on Multimedia, 26, 1025–1038, 2024.
  • [11] Gao Y, Zhou M, Liu D, Yan Z, Zhang S, Metaxas DN. ‘’A data-scalable transformer for medical image segmentation: architecture, model efficiency, and benchmark’’. arXiv preprint arXiv:2203.00131, 2022.
  • [12] Roy S, Koehler G, Ulrich C, Baumgartner M, Petersen J, Isensee F, Maier-Hein KH. ‘’Mednext: transformer-driven scaling of convnets for medical image segmentation’’. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland; pp. 405–415, 2023.
  • [13] Li W, Feng C, Yu K, Zhao D. ‘’MISS-D: a fast and scalable framework of medical image storage service based on distributed file system’’. Comput Methods Programs Biomed. 186, 105189, 2020.
  • [14] Malayil MV, Vedhanayagam M. ‘’A novel image scaling based reversible watermarking scheme for secure medical image transmission’’. ISA Trans., 108, 269–81, 2021.
  • [15] Padhy S, Dash S, Shankar TN, Rachapudi V, Kumar S, Nayyar A. ‘’A hybrid crypto-compression model for secure brain mri image transmission’’. Multimedia Tools Appl. 83(8), 24361–81, 2024.
  • [16] Xue X, Marappan R, Raju SK, Raghavan R, Rajan R, Khalaf OI, Abdulsahib GM. ‘’Modelling and analysis of hybrid transformation for lossless big medical image compression’’. Bioengineering, 10(3), 333, 2023.
  • [17] Reddy VP, Prasad RM, Udayaraju P, Naik BH, Raja C. ‘’Efficient medical image security and transmission using modified LZW compression and ECDH-AES for telemedicine applications’’. Soft Computing Fusion Found Methodologies Appl. 27(13), 2023.
  • [18] Zhou D, Cai Z, He D. ‘’A new biorthogonal spline wavelet-based k-layer network for underwater image enhancement’’. Mathematics, 12(9), 1366, 2024.
  • [19] Wang L, Sun, Y. "Improved Canny edge detection algorithm". 2021 2nd International Conference on Computer Science and Management Technology (ICCSMT), Shanghai, China, pp. 414-417, 2021.
  • [20] Jin Y, Li Z, Tian Y, Wei X, Liu C. ‘’A novel interpretable multilevel wavelet decomposition deep network for actual heartbeat classification’’. Sci. China Technol. Sci. 67, 1842–1854, 2024.
  • [21] Eulig E, Ommer B, Kachelrieß M. ‘’Benchmarking deep learning-based low-dose CT image denoising algorithms’’. The International Journal of Medical Physics Research and Practice, 51(12), 8776-8788, 2024.
  • [22] Dziembowski A, Nowak W, Stankowski J. ‘’IV-SSIM—The structural similarity metric for immersive video’’. Applied Sciences, 14(16), 7090, 2024.
  • [23] Durdu A. ‘’24-bit renkli imge içine 24-bit renkli imge gizleyen yüksek kapasiteli düşük bozulumlu tersinir kayıplı yeni bir veri gizleme yöntemi (YKKG)’’. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 96-113, 2021.
  • [24] Mishra J, Kumar V. "Study of digital image compression techniques and framework for suitability selection based on similarity measuring metrics," 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, pp. 1-6, 2024.
  • [25] Can E, Karaca AC, Urhan O, Güllü MK. ‘’Compression of hyperspectral images using automatic adaptive luminance transform and 3D-DCT method’’. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 868-883, 2020.
  • [26] Ince IF, Bulut F, Kilic I, Yildirim ME, Ince OF.‘’Low dynamic range discrete cosine transform (LDR-DCT) for high-performance JPEG image compression’’. The Visual Computer, 38(5), 1845-1870, 2022.
  • [27] Bulut F, Ince IF. ‘’Iterative histogram equalization using discrete wavelet transform in low-dynamic range’’. Journal of Electronic Imaging, 32(2), 023034-023034, 2023.
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Tuğba Özge Onur 0000-0002-8736-2615

Early Pub Date November 2, 2025
Publication Date November 17, 2025
Submission Date February 12, 2025
Acceptance Date August 21, 2025
Published in Issue Year 2026 Volume: 32 Issue: 3

Cite

APA Onur, T. Ö. (2025). Adaptive multi-level wavelet decomposition for efficient image compression. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(3). https://doi.org/10.5505/pajes.2025.72279
AMA Onur TÖ. Adaptive multi-level wavelet decomposition for efficient image compression. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(3). doi:10.5505/pajes.2025.72279
Chicago Onur, Tuğba Özge. “Adaptive Multi-Level Wavelet Decomposition for Efficient Image Compression”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 3 (November 2025). https://doi.org/10.5505/pajes.2025.72279.
EndNote Onur TÖ (November 1, 2025) Adaptive multi-level wavelet decomposition for efficient image compression. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 3
IEEE T. Ö. Onur, “Adaptive multi-level wavelet decomposition for efficient image compression”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi: 10.5505/pajes.2025.72279.
ISNAD Onur, Tuğba Özge. “Adaptive Multi-Level Wavelet Decomposition for Efficient Image Compression”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/3 (November2025). https://doi.org/10.5505/pajes.2025.72279.
JAMA Onur TÖ. Adaptive multi-level wavelet decomposition for efficient image compression. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.72279.
MLA Onur, Tuğba Özge. “Adaptive Multi-Level Wavelet Decomposition for Efficient Image Compression”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi:10.5505/pajes.2025.72279.
Vancouver Onur TÖ. Adaptive multi-level wavelet decomposition for efficient image compression. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(3).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif