Research Article
BibTex RIS Cite

Behavior of geogrid-reinforced concrete slabs subjected to contact explosions

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.40204

Abstract

Bomb attacks are occurring in the world due to the increasing hot and cold wars. In this study, the contact explosion, which affects the resistance of the structure the most, was investigated among these attacks. Since the explosive is in contact with the surface of the structure in contact explosion, the reaction of the structure in bending and shear behavior due to sudden dynamic loading differs from other loads. In our experimental study, 50x50x15 cm reinforced concrete slabs reinforced with steel wire mesh, wire fence and geogrid building materials were produced in order to compare the behavior of concrete against explosion. In contact with these plates, 577 gr explosive was applied and detonated. In the experiments, the contact explosion reactions of geogrid reinforced concrete and steel-reinforced concrete and unreinforced concrete were compared. As a result of the experiments, it was determined that the concrete reinforced with wire fence and geogrid is applicable against contact explosion

References

  • [1] Li J, Hao H. “Numerical study of concrete spall damage to blast loads”. International Journal of Impact Engineering, 68(1), 41–55, 2014.
  • [2] Li Q, Wu C, Su Y. “Experiment and numerical investigations of ultra-high toughness cementitious composite slabs under contact explosions”. International Journal of Impact Engineering, 159(1), 1–20, 2022. [3] Brismar BO, Bergenwald L. “The Terrorist Bomb Explosion in Bologna, Italy, 1980”. Journal of Trauma Injury Infection and Critical Care, 22(3), 216–220, 1982.
  • [4] Máca P, Sovják R, Konvalinka P. “Mix design of UHPFRC and its response to projectile impact”. International Journal of Impact Engineering, 63(1), 158–163, 2014.
  • [5] [Li J, Wu C, Hao H, Wang Z, Su Y. “Experimental investigation of ultra-high performance concrete slabs under contact explosions”. International Journal of Impact Engineering, 93(1), 62–75, 2016.
  • [6] Savaş S, Ulker M, Turgut S, Bakir D. “Determination of energy damping upon impact load in reinforced concrete sandwich plates with different core geometries”. Scientia Iranica, 28(6A), 3082–3091, 2021.
  • [7] Wan W, Yang J, Xu G, Liu Y. “Determination and evaluation of Holmquist-Johnson-Cook constitutive model parameters for ultra-high-performance concrete with steel fibers”. International Journal of Impact Engineering, 156(1), 1–15, 2021.
  • [8] Yang D, Zhang B, Liu G. “Experimental Study on Spall Resistance of Steel-Fiber Reinforced Concrete Slab Subjected to Explosion”. International Journal of Concrete Structures and Materials, 15(1), 2021.
  • [9] Yao W, Sun W, Shi Z, Chen B, Chen L, Feng J. “Blast-resistant performance of hybrid fiber-reinforced concrete (HFRC) panels subjected to contact detonation”. Applied Sciences, 10(1), 2020.
  • [10] Shi S, Liao Y, Peng X, Liang C, Sun J. “Behavior of polyurea-woven glass fiber mesh composite reinforced RC slabs under contact explosion”. International Journal of Impact Engineering, 132(1), 2019.
  • [11] Wang W, Yang J, Wang J, Wang X, Huo Q. “Experimental investigation of polyisocyanate-oxazodone coated square reinforced concrete slab under contact explosions”. International Journal of Impact Engineering, 149(1), 2021.
  • [12] Zhao C, He K, Lu X, Pan R, Wang J, Li X. “Analysis on the blast resistance of steel concrete composite slab”. Explosion and Shock Waves, 41(9), 2021.
  • [13] Wang ZG, Wu H, Fang Q, Wu J. “Numerical study on the residual axial capacity of ultra high performance cementitious composite filled steel tube (UHPCC-FST) column under contact explosion”. Thin-Walled Structures, 153(1), 2020.
  • [14] Lakshmi Priyanka C, Vijayalakshmi B, Nagavalli M, Dhinakaran G. “Strength and durability studies on high volume ready-made ultrafine slag-based high-strength concrete”. Scientia Iranica, 26(5A), 2624–2632, 2019.
  • [15] Al-Hedad ASA, Farhan NA, Zhang M, Sheikh MN, Hadi MNS. “Effect of geogrid reinforcement on the drying shrinkage and thermal expansion of geopolymer concrete”. Structural Concrete, 21(3), 1029–1039, 2020.
  • [16] Dong YL, Han J, Bai XH. “Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures”. Geotextiles and Geomembranes, 29(2), 83–91, 2011.
  • [17] Cicek E, Guler E, Yetimoglu T. “Effects of the first reinforcement depth on different types of geosynthetics”. Scientia Iranica, 26(1A), 167–177, 2019.
  • [18] Yadu L, Tripathi RK. “Effect of the Length of Geogrid Layers in the Bearing Capacity Ratio of Geogrid Reinforced Granular Fill-soft Subgrade Soil System”. Procedia - Social and Behavioral Sciences, 104, 225–234, 2013.
  • [19] Derakhshandi M, Rahmati G, Sadjadi M. “Static Performance of Geosynthetic Reinforced Soil Walls with Peripheral Soil–Cement Mixtures”. Scientia Iranica, 0(0), 0–0, 2018.
  • [20] Savas S, Bakir D, Akcaat YK. “Experimental and numerical investigation of the usability of nonwoven hemp as a reinforcement material”. Case Studies in Construction Materials, 20, e03091, 2024.
  • [21] Siva Chidambaram R, Agarwal P. “The confining effect of geo-grid on the mechanical properties of concrete specimens with steel fiber under compression and flexure”. Construction and Building Materials, 71, 628–637, 2014.
  • [22] RajeshKumar K et al. “Structural Performance of Biaxial Geogrid Reinforced Concrete Slab”. International Journal of Civil Engineering, 20, 349–359, 2022.
  • [23] Al Qadi ANS, Al-Kadi QNS, Al-Zaidyeen SM. “Impact Strength of Oil-Palm Shell on Lightweight Concrete Slabs Reinforced with a Geo-Grid”. Journal of Materials in Civil Engineering, 27(10), 04014264, 2015. [24] Meng X, Jiang Q, Liu R. “Flexural performance and toughness characteristics of geogrid-reinforced pervious concrete with different aggregate sizes”. Materials, 14(9), 2021.
  • [25] Vijay TJ, Rajesh Kumar K, Vandhiyan R, Mahender K, Tharani K. “Performance of Geogrid Reinforced Concrete Slabs under Drop Weight Impact Loading”. IOP Conference Series: Materials Science and Engineering, 981(3), 032070, 2020.
  • [26] Wu J. “Development of advanced pavement materials system for blast load”. National University of Singapore, 2012.
  • [27] Wu J, Chew SH. “Field performance and numerical modeling of multi-layer pavement system subject to blast load”. Construction and Building Materials, 52, 177–188, 2014.
  • [28] Chen GF. “Experimental study on axial compression behavior of steel wire confined concrete”. Zhengzhou University, 2010.
  • [29] Emara M, Rizk MS, Mohamed HA, Zaghlal M. “Enhancement of circular RC columns using steel mesh as internal or external confinement under the influence of axial compression loading”. Frattura ed Integrità Strutturale, 15(58), 86–104, 2021.
  • [30] Fahmy EH, Shaheen YBI, Abdelnaby AM, Abou Zeid MN. “Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms”. International Journal of Concrete Structures and Materials, 8(1), 83–97, 2014.
  • [31] Kondraivendhan B, Pradhan B. “Effect of ferrocement confinement on behavior of concrete”. Construction and Building Materials, 23(3), 1218–1222, 2009.
  • [32] Tawab AA, Fahmy EH, Shaheen YB. “Use of permanent ferrocement forms for concrete beam construction”. Materials and Structures, 45(9), 1319–1329, 2012.
  • [33] Ibrahim HM. “Experimental investigation of ultimate capacity of wired mesh-reinforced cementitious slabs”. Construction and Building Materials, 25(1), 251–259, 2011.
  • [34] Li J, Wu C, Hao H. “Spallation of reinforced concrete slabs under contact explosion”. Asian Conference on Defence Technology, 2nd ed., 42–45, 2016.
  • [35] Li J, Wu C, Hao H, Su Y. “Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion”. Materials and Design, 116(1), 77–91, 2017.
  • [36] DIN EN 10137-3. “Plates and Wide Flats Made of High Yield Strength Structural Steels in the Quenched and Tempered or Precipitation Hardened Conditions Part 3: Delivery Conditions for Precipitation Hardened Steels”. Berlin, Germany, 1995.
  • [37] ISO 1183-1, “Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pycnometer method and titration method”.2025.
  • [38] ASTM D1603-20, “Standard Test Method for Carbon Black Content in Olefin Plastics”. 2020.
  • [39] ISO 9863-1, “Geosynthetics Determination of thickness at specified pressures”.2016.
  • [40] ISO 9864, “Geosynthetics — Test method for the determination of mass per unit area of geotextiles and geotextile-related products”.2005.
  • [41] “Orica-Nitro Explosives.” [Online]. Available: http://www.orica-nitro.com.tr/
  • [42] “Oros-Or36-Datalogger.” [Online]. Available: https://www.oros.com/solutions/instruments-accessories/or36-mobipack-16-channels-teamwork-analyzer-recorder/
  • [43] Savas S, Bakir D. “An experimental study on the blast responses of hollow core concrete slabs to contact explosions,” Rev. la construcción, 21(3), 587–601, 2022.
  • [44] U. F. Criteria(UFC), Structures to Resist the Effects of the Accidental Explosions. 2008.
  • [45] ACI 544, State-of-the-Art Report on Fiber Reinforced Concrete, 2002.
  • [46] CEB-FIP, Model Code for Concrete Structures,1990.

Geogrid takviyeli beton döşemelerin temas patlamasına karşı davranışının araştırılması

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.40204

Abstract

Dünyada gittikçe artan sıcak ve soğuk savaşlardan kaynaklı bombalı saldırılar meydana gelmektedir. Çalışmamızda bu saldırılar içerisinde yapının direncini en fazla etkileyen temas patlaması araştırılmıştır. Temas patlamasında patlayıcı yapı yüzeyi ile temas halinde olduğu için ani dinamik yüklemeden dolayı yapı eğilme ve kesme davranışında gösterdiği reaksiyonlarda diğer yüklemlere göre farklılık göstermektedir Patlama olayında bir mühendislik yapısının göstereceği hasarı azaltmak için hem dayanıklılık hem de ekonomik performansı göz önüne almak gereklidir. Yaptığımız deneysel çalışmada betonun patlama karşısındaki davranışlarını kıyaslamayabilmek için hasır çelik, telçit ve geogrid yapı malzemeleri ile güçlendirilmiş 50x50x15 cm BA plaklar üretilmiştir. Bu plaklara temas halinde 577 g patlayıcı uygulanarak patlatılmıştır. Deneylerde geogrid takviyeli beton ile çelik donatılı beton ve donatısız betonun temas patlaması reaksiyonları ile karşılaştırılmıştır. Yapılan deneyler sonucunda telçit ve geogrid ile güçlendirilmiş betonun temas patlamasına karşı uygulanabilir olduğu belirlenmiştir.

References

  • [1] Li J, Hao H. “Numerical study of concrete spall damage to blast loads”. International Journal of Impact Engineering, 68(1), 41–55, 2014.
  • [2] Li Q, Wu C, Su Y. “Experiment and numerical investigations of ultra-high toughness cementitious composite slabs under contact explosions”. International Journal of Impact Engineering, 159(1), 1–20, 2022. [3] Brismar BO, Bergenwald L. “The Terrorist Bomb Explosion in Bologna, Italy, 1980”. Journal of Trauma Injury Infection and Critical Care, 22(3), 216–220, 1982.
  • [4] Máca P, Sovják R, Konvalinka P. “Mix design of UHPFRC and its response to projectile impact”. International Journal of Impact Engineering, 63(1), 158–163, 2014.
  • [5] [Li J, Wu C, Hao H, Wang Z, Su Y. “Experimental investigation of ultra-high performance concrete slabs under contact explosions”. International Journal of Impact Engineering, 93(1), 62–75, 2016.
  • [6] Savaş S, Ulker M, Turgut S, Bakir D. “Determination of energy damping upon impact load in reinforced concrete sandwich plates with different core geometries”. Scientia Iranica, 28(6A), 3082–3091, 2021.
  • [7] Wan W, Yang J, Xu G, Liu Y. “Determination and evaluation of Holmquist-Johnson-Cook constitutive model parameters for ultra-high-performance concrete with steel fibers”. International Journal of Impact Engineering, 156(1), 1–15, 2021.
  • [8] Yang D, Zhang B, Liu G. “Experimental Study on Spall Resistance of Steel-Fiber Reinforced Concrete Slab Subjected to Explosion”. International Journal of Concrete Structures and Materials, 15(1), 2021.
  • [9] Yao W, Sun W, Shi Z, Chen B, Chen L, Feng J. “Blast-resistant performance of hybrid fiber-reinforced concrete (HFRC) panels subjected to contact detonation”. Applied Sciences, 10(1), 2020.
  • [10] Shi S, Liao Y, Peng X, Liang C, Sun J. “Behavior of polyurea-woven glass fiber mesh composite reinforced RC slabs under contact explosion”. International Journal of Impact Engineering, 132(1), 2019.
  • [11] Wang W, Yang J, Wang J, Wang X, Huo Q. “Experimental investigation of polyisocyanate-oxazodone coated square reinforced concrete slab under contact explosions”. International Journal of Impact Engineering, 149(1), 2021.
  • [12] Zhao C, He K, Lu X, Pan R, Wang J, Li X. “Analysis on the blast resistance of steel concrete composite slab”. Explosion and Shock Waves, 41(9), 2021.
  • [13] Wang ZG, Wu H, Fang Q, Wu J. “Numerical study on the residual axial capacity of ultra high performance cementitious composite filled steel tube (UHPCC-FST) column under contact explosion”. Thin-Walled Structures, 153(1), 2020.
  • [14] Lakshmi Priyanka C, Vijayalakshmi B, Nagavalli M, Dhinakaran G. “Strength and durability studies on high volume ready-made ultrafine slag-based high-strength concrete”. Scientia Iranica, 26(5A), 2624–2632, 2019.
  • [15] Al-Hedad ASA, Farhan NA, Zhang M, Sheikh MN, Hadi MNS. “Effect of geogrid reinforcement on the drying shrinkage and thermal expansion of geopolymer concrete”. Structural Concrete, 21(3), 1029–1039, 2020.
  • [16] Dong YL, Han J, Bai XH. “Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures”. Geotextiles and Geomembranes, 29(2), 83–91, 2011.
  • [17] Cicek E, Guler E, Yetimoglu T. “Effects of the first reinforcement depth on different types of geosynthetics”. Scientia Iranica, 26(1A), 167–177, 2019.
  • [18] Yadu L, Tripathi RK. “Effect of the Length of Geogrid Layers in the Bearing Capacity Ratio of Geogrid Reinforced Granular Fill-soft Subgrade Soil System”. Procedia - Social and Behavioral Sciences, 104, 225–234, 2013.
  • [19] Derakhshandi M, Rahmati G, Sadjadi M. “Static Performance of Geosynthetic Reinforced Soil Walls with Peripheral Soil–Cement Mixtures”. Scientia Iranica, 0(0), 0–0, 2018.
  • [20] Savas S, Bakir D, Akcaat YK. “Experimental and numerical investigation of the usability of nonwoven hemp as a reinforcement material”. Case Studies in Construction Materials, 20, e03091, 2024.
  • [21] Siva Chidambaram R, Agarwal P. “The confining effect of geo-grid on the mechanical properties of concrete specimens with steel fiber under compression and flexure”. Construction and Building Materials, 71, 628–637, 2014.
  • [22] RajeshKumar K et al. “Structural Performance of Biaxial Geogrid Reinforced Concrete Slab”. International Journal of Civil Engineering, 20, 349–359, 2022.
  • [23] Al Qadi ANS, Al-Kadi QNS, Al-Zaidyeen SM. “Impact Strength of Oil-Palm Shell on Lightweight Concrete Slabs Reinforced with a Geo-Grid”. Journal of Materials in Civil Engineering, 27(10), 04014264, 2015. [24] Meng X, Jiang Q, Liu R. “Flexural performance and toughness characteristics of geogrid-reinforced pervious concrete with different aggregate sizes”. Materials, 14(9), 2021.
  • [25] Vijay TJ, Rajesh Kumar K, Vandhiyan R, Mahender K, Tharani K. “Performance of Geogrid Reinforced Concrete Slabs under Drop Weight Impact Loading”. IOP Conference Series: Materials Science and Engineering, 981(3), 032070, 2020.
  • [26] Wu J. “Development of advanced pavement materials system for blast load”. National University of Singapore, 2012.
  • [27] Wu J, Chew SH. “Field performance and numerical modeling of multi-layer pavement system subject to blast load”. Construction and Building Materials, 52, 177–188, 2014.
  • [28] Chen GF. “Experimental study on axial compression behavior of steel wire confined concrete”. Zhengzhou University, 2010.
  • [29] Emara M, Rizk MS, Mohamed HA, Zaghlal M. “Enhancement of circular RC columns using steel mesh as internal or external confinement under the influence of axial compression loading”. Frattura ed Integrità Strutturale, 15(58), 86–104, 2021.
  • [30] Fahmy EH, Shaheen YBI, Abdelnaby AM, Abou Zeid MN. “Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms”. International Journal of Concrete Structures and Materials, 8(1), 83–97, 2014.
  • [31] Kondraivendhan B, Pradhan B. “Effect of ferrocement confinement on behavior of concrete”. Construction and Building Materials, 23(3), 1218–1222, 2009.
  • [32] Tawab AA, Fahmy EH, Shaheen YB. “Use of permanent ferrocement forms for concrete beam construction”. Materials and Structures, 45(9), 1319–1329, 2012.
  • [33] Ibrahim HM. “Experimental investigation of ultimate capacity of wired mesh-reinforced cementitious slabs”. Construction and Building Materials, 25(1), 251–259, 2011.
  • [34] Li J, Wu C, Hao H. “Spallation of reinforced concrete slabs under contact explosion”. Asian Conference on Defence Technology, 2nd ed., 42–45, 2016.
  • [35] Li J, Wu C, Hao H, Su Y. “Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion”. Materials and Design, 116(1), 77–91, 2017.
  • [36] DIN EN 10137-3. “Plates and Wide Flats Made of High Yield Strength Structural Steels in the Quenched and Tempered or Precipitation Hardened Conditions Part 3: Delivery Conditions for Precipitation Hardened Steels”. Berlin, Germany, 1995.
  • [37] ISO 1183-1, “Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pycnometer method and titration method”.2025.
  • [38] ASTM D1603-20, “Standard Test Method for Carbon Black Content in Olefin Plastics”. 2020.
  • [39] ISO 9863-1, “Geosynthetics Determination of thickness at specified pressures”.2016.
  • [40] ISO 9864, “Geosynthetics — Test method for the determination of mass per unit area of geotextiles and geotextile-related products”.2005.
  • [41] “Orica-Nitro Explosives.” [Online]. Available: http://www.orica-nitro.com.tr/
  • [42] “Oros-Or36-Datalogger.” [Online]. Available: https://www.oros.com/solutions/instruments-accessories/or36-mobipack-16-channels-teamwork-analyzer-recorder/
  • [43] Savas S, Bakir D. “An experimental study on the blast responses of hollow core concrete slabs to contact explosions,” Rev. la construcción, 21(3), 587–601, 2022.
  • [44] U. F. Criteria(UFC), Structures to Resist the Effects of the Accidental Explosions. 2008.
  • [45] ACI 544, State-of-the-Art Report on Fiber Reinforced Concrete, 2002.
  • [46] CEB-FIP, Model Code for Concrete Structures,1990.
There are 44 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Dursun Bakır

Sedat Savaş

Early Pub Date November 2, 2025
Publication Date November 17, 2025
Submission Date June 29, 2025
Acceptance Date September 8, 2025
Published in Issue Year 2026 Volume: 32 Issue: 3

Cite

APA Bakır, D., & Savaş, S. (2025). Behavior of geogrid-reinforced concrete slabs subjected to contact explosions. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(3). https://doi.org/10.5505/pajes.2025.40204
AMA Bakır D, Savaş S. Behavior of geogrid-reinforced concrete slabs subjected to contact explosions. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(3). doi:10.5505/pajes.2025.40204
Chicago Bakır, Dursun, and Sedat Savaş. “Behavior of Geogrid-Reinforced Concrete Slabs Subjected to Contact Explosions”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 3 (November 2025). https://doi.org/10.5505/pajes.2025.40204.
EndNote Bakır D, Savaş S (November 1, 2025) Behavior of geogrid-reinforced concrete slabs subjected to contact explosions. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 3
IEEE D. Bakır and S. Savaş, “Behavior of geogrid-reinforced concrete slabs subjected to contact explosions”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi: 10.5505/pajes.2025.40204.
ISNAD Bakır, Dursun - Savaş, Sedat. “Behavior of Geogrid-Reinforced Concrete Slabs Subjected to Contact Explosions”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/3 (November2025). https://doi.org/10.5505/pajes.2025.40204.
JAMA Bakır D, Savaş S. Behavior of geogrid-reinforced concrete slabs subjected to contact explosions. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.40204.
MLA Bakır, Dursun and Sedat Savaş. “Behavior of Geogrid-Reinforced Concrete Slabs Subjected to Contact Explosions”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi:10.5505/pajes.2025.40204.
Vancouver Bakır D, Savaş S. Behavior of geogrid-reinforced concrete slabs subjected to contact explosions. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(3).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif