Research Article
BibTex RIS Cite

Effect of external load on osmotic compression in clay soils

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.22379

Abstract

Clay soils that have not been exposed to saltwater can come into contact with brine due to saltwater flooding, sewage intrusion, or similar events. Additional settlements can occur in clays that subsequently interact with brine, driven by the osmotic effect. To investigate this, a series of odometer experiments were conducted on two natural clay samples: one with low plasticity (CL) and one with high plasticity (CH). The lowplasticity samples predominantly contained minerals from the kaolin group, while the high-plasticity samples were rich in minerals from the smectite group. The samples, prepared with distilled water, were exposed to brine solutions of varying concentrations (0.1M, 0.25M, 1M, and 2M NaCl and CaCl2) under specific consolidation pressures (12.5 kPa, 50 kPa, and 200 kPa), simulating osmotically compressed soils. Structural and fabric alterations were examined using SEM images and EDX data collected from the tested samples. It was observed that mechanical forces were the primary factor in the compression of lowplasticity clay, which exhibited minimal fabric changes under the influence of salt. Consequently, osmotic-induced compression and fabric alterations were negligible. For the high-plasticity samples (with high smectite content), the highest osmotic compression was recorded at 50 kPa. These findings highlight the importance of balancing structural stress caused by external loads with osmotic forces.

References

  • [1] K. Satake, “Tsunamis,” in Earthquake Seismology, vol. 4, G. Schubert, Ed., 2007, pp. 483–511. doi: 10.1016/B978-044452748-6.00078-X.
  • [2] M. A. Baptista and J. M. Miranda, “Revision of the Portuguese catalog of tsunamis,” Natural Hazards and Earth System Sciences, vol. 9, no. 1, pp. 25–42, 2009, doi: 10.5194/nhess-9-25-2009.
  • [3] S. Yolsal-Çevikbilen and T. Taymaz, “Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean,” Tectonophysics, vol. 536–537, pp. 61–100, 2012, doi: https://doi.org/10.1016/j.tecto.2012.02.019.
  • [4] J. P. Terry, N. Winspear, J. Goff, and P. H. H. Tan, “Past and potential tsunami sources in the South China Sea: A brief synthesis,” Earth Sci Rev, vol. 167, pp. 47–61, 2017, doi: https://doi.org/10.1016/j.earscirev.2017.02.007.
  • [5] L. Cordrie, A. Gailler, P. Heinrich, P. Briole, and A. Ganas, “The July 20, 2017 Mw = 6.6 Bodrum-Kos Earthquake, Southeast Aegean Sea: Contribution of the Tsunami Modeling to the Assessment of the Fault Parameters,” Pure Appl Geophys, vol. 178, no. 12, pp. 4865–4889, 2021, doi: 10.1007/s00024-021-02766-3.
  • [6] C. Yavuz, K. Yilmaz, and G. Onder, “Combined Hazard Analysis of Flood and Tsunamis on The Western Mediterranean Coast of Turkey,” Natural Hazards and Earth System Sciences Discussions, vol. 2022, pp. 1–20, Jun. 2022, doi: 10.5194/nhess-2022-121.
  • [7] NASA, “Sea Surface Salinity From Space - NASA,” https://salinity.oceansciences.org/. Accessed: Nov. 16, 2022. [Online]. Available: https://salinity.oceansciences.org/highlights04.htm
  • [8] C. Di Maio, “Influence of Pore Fluid Composition on Volume Change Behaviour of Clays Exposed to the Same Fluid as the Pore Fluid,” in Chemo-Mechanical Couplings in Porous Media Geomechanics and Biomechanics, B. Loret and J. M. Huyghe, Eds., Vienna: Springer Vienna, 2004, pp. 1–17. doi: 10.1007/978-3-7091-2778-0_1.
  • [9] A. Ş. Zaimoğlu, F. Hattatoğlu, and R. K. Akbulut, “Yüke maruz ince daneli zeminlerin donma-çözülme davranışı,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 19, no. 3, pp. 117–120, 2013, doi: 10.5505/pajes.2013.35744.
  • [10] S. Siddiqua, G. Siemens, J. Blatz, A. Man, and B. F. Lim, “Influence of Pore Fluid Chemistry on the Mechanical Properties of Clay-Based Materials,” Geotechnical and Geological Engineering, vol. 32, no. 4, pp. 1029–1042, 2014, doi: 10.1007/s10706-014-9778-z.
  • [11] S. Akbulut, Z. N. Kurt, and S. Arasan, “Surfactant modified clays’ consistency limits and contact angles,” Earth Sciences Research Journal, vol. 16, no. 2, pp. 13–19, 2012.
  • [12] B. K. Dahal and J.-J. Zheng, “Compression behavior of reconstituted clay: A study on black clay,” Journal of Nepal Geological Society, vol. 55, no. 1, pp. 55–60, 2018, doi: 10.3126/jngs.v55i1.22789.
  • [13] R. M. Schmitz, C. Schroeder, and R. Charlier, “Chemo–mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits,” Appl Clay Sci, vol. 26, no. 1–4, pp. 351–358, Aug. 2004, doi: 10.1016/j.clay.2003.12.015.
  • [14] H. Bayesteh, M. Sharifi, and A. Haghshenas, “Effect of stone powder on the rheological and mechanical performance of cement-stabilized marine clay/sand,” Constr Build Mater, vol. 262, p. 120792, Nov. 2020, doi: 10.1016/J.CONBUILDMAT.2020.120792.
  • [15] H. Bayesteh and A. Bayat, “Volume change behavior of reconstituted marine clay: effect of initial and leaching pore fluid salinity,” Environ Earth Sci, vol. 80, no. 6, p. 235, 2021, doi: 10.1007/s12665-021-09533-6.
  • [16] Naeini M. A. and Jahanfar S. A., “Effect of Salt Solution and Plasticity Index on undrain Shear Strength of Clays,” International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 5, pp. 92–96, 2011, doi: https://doi.org/10.5281/zenodo.1058403.
  • [17] Naeini M. A. and Jahanfar S. A., “Effect of Salt Solution and Plasticity Index on undrain Shear Strength of Clays,” International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 5, pp. 92–96, Jan. 2011, doi: https://doi.org/10.5281/zenodo.1058403.
  • [18] K. R. Reddy, P. Yaghoubi, and Y. Yukselen-Aksoy, “Effects of biochar amendment on geotechnical properties of landfill cover soil,” Waste Management & Research, vol. 33, no. 6, pp. 524–532, 2015, doi: 10.1177/0734242X15580192.
  • [19] Ö. Çimen, H. İ. Günaydın, and S. N. Keskin, “Effect of construction waste to engineering properties of high Plasticity clay soil,” Pamukkale University Journal of Engineering Sciences, vol. 23, no. 3, pp. 250–253, 2017, doi: 10.5505/pajes.2016.81567.
  • [20] M. L. Diallo and Y. S. Ünsever, “An experimental study on the stabilization of a clay soil with construction wastes and lime,” Pamukkale University Journal of Engineering Sciences, vol. 26, no. 6, pp. 1030–1034, 2020, doi: 10.5505/pajes.2019.51436.
  • [21] H. I. Inyang, J. L. Daniels, and V. Ogunro, “Engineering controls for risk reduction at Brownfield sites,” American Society of Civil Engineers, Geo-Congress ’98, 1998, doi: https://doi.org/10.1061/9780784403891.016.
  • [22] C. H. Benson, J. N. Meegoda, R. G. Gilbert, and S. P. Clemence, “Risk-Based Corrective Action and Brownfields Restorations,” American Society of Civil Engineers, Geo-Congress ’98, Oct. 1998, doi: https://doi.org/10.1061/9780784403891.
  • [23] G. Scaringi and C. Di Maio, “Residual Shear Strength of Clayey Soils: the influence of displacement rate,” in GC Chiorean (ed.), Proc. 2nd Int. PhD Conf. Civ. Eng. & Arch, 2014, pp. 325–332. Accessed: Nov. 01, 2021. [Online]. Available: https://hdl.handle.net/11563/98898
  • [24] C. Di Maio and G. Scaringi, “Shear displacements induced by decrease in pore solution concentration on a pre-existing slip surface,” Eng Geol, vol. 200, pp. 1–9, Jan. 2016, doi: 10.1016/j.enggeo.2015.11.007.
  • [25] S. L. Barbour and D. G. Fredlund, “Mechanisms of osmotic flow and volume change in clay soils,” Canadian Geotechnical Journal, vol. 26, no. 4, pp. 551–562, Nov. 1989, doi: 10.1139/t89-068.
  • [26] C. Di Maio, “Exposure of bentonite to salt solution: Osmotic and mechanical effects,” Geotechnique, vol. 46, no. 4, pp. 695–707, 1996, doi: 10.1680/geot.1996.46.4.695.
  • [27] M. Kaczmarek and T. Hueckel, “Chemo-mechanical consolidation of clays: analytical solutions for a linearized one-dimensional problem,” Transp Porous Media, vol. 32, no. 1, pp. 49–74, 1998, doi: https://doi.org/10.1023/A:1006530405361.
  • [28] M. Olgun and M. Yıldız, “Effect of organic fluids on the geotechnical behavior of a highly plastic clayey soil,” Appl Clay Sci, vol. 48, no. 4, pp. 615–621, 2010, doi: https://doi.org/10.1016/j.clay.2010.03.015.
  • [29] T. Thyagaraj and S. M. Rao, “Osmotic swelling and osmotic consolidation behaviour of compacted expansive clay,” Geotechnical and Geological Engineering, vol. 31, no. 2, pp. 435–445, 2013, Accessed: Aug. 08, 2021. [Online]. Available: https://link.springer.com/article/10.1007/s10706-012-9596-0
  • [30] Y. Xu, G. Xiang, H. Jiang, T. Chen, and F. Chu, “Role of osmotic suction in volume change of clays in salt solution,” Appl Clay Sci, vol. 101, pp. 354–361, 2014, doi: https://doi.org/10.1016/j.clay.2014.09.006.
  • [31] D. Yang, R. Yan, T. Ma, and C. Wei, “Compressive behavior of kaolinitic clay under chemo-mechanical loadings,” Acta Geotech, vol. 18, no. 1, pp. 77–94, 2023, doi: 10.1007/s11440-022-01554-0.
  • [32] G. H. Bolt, “Physico-Chemical Analysis of the Compressibility of Pure Clays,” Géotechnique, vol. 6, no. 2, pp. 86–93, Jun. 1956, doi: 10.1680/geot.1956.6.2.86.
  • [33] A. Sridharan, “Engineering behaviour of fine grained soils—a fundamental approach,” Indian Geotechnical Journal: Thirteenth IGS Annual Lecture delivered on the occasion of its 32nd Annual General Session, pp. 447–540, 1991, Accessed: Mar. 07, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Engineering-Behaviour-of-Fine-Grained-Soils-A-A./014de1727ba69ab3fdaa8f36a55e883de2e21507?utm_source=direct_link
  • [34] S. M. Rao, A. Sridharan, and S. Chandrakaran, “Consistency Limits Behavior of Bentonites Exposed to Sea-Water,” Marine Georesources & Geotechnology, vol. 11, no. 3, pp. 213–227, 1993, doi: https://doi.org/10.1080/10641199309379919.
  • [35] A. Sridharan and Sayamurty P., “Potential-Distance Relationships of Clay-Water Systems Considering the Stern Theory,” Clays Clay Miner, vol. 44, no. 4, pp. 479–484, 1996, doi: 10.1346/CCMN.1996.0440405.
  • [36] A. Sridharan and K. Prakash, “Influence of clay mineralogy and pore-medium chemistry on clay sediment formation,” Canadian Geotechnical Journal, vol. 36, no. 5, pp. 961–966, Nov. 1999, doi: 10.1139/t99-045.
  • [37] J. K. Mitchell and K. Soga, “Fundamentals of soil Behavior,” John Wiley& Sons, Hoboken, New Jersey, USA, 2005.
  • [38] S. M. Rao and T. Thyagaraj, “Swell–compression behaviour of compacted clays under chemical gradients,” Canadian Geotechnical Journal, vol. 44, no. 5, pp. 520–532, May 2007, doi: 10.1139/t07-002.
  • [39] T. V. Bharat and A. Sridharan, “Prediction of Compressibility Data for Highly Plastic Clays Using Diffuse Double-Layer Theory,” Clays Clay Miner, vol. 63, no. 1, pp. 30–42, 2015, doi: 10.1346/CCMN.2015.0630103.
  • [40] TS EN ISO 17892-12, Geotechnical investigation and testing - Laboratory testing of soil - Part 12: Determination of liquid and plastic limits. Ankara: Turkish Standard Institute - TSE, 2018.
  • [41] TS EN ISO 17892-3, Geotechnical investigation and testing - Laboratory testing of soil - Part 3: Determination of particle density. Ankara: Turkish Standards Institute-TSE, 2016.
  • [42] TS EN ISO 17892-4, Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of particle size distribution. Ankara: Turkish Standards Institute-TSE, 2016.
  • [43] TS EN ISO 17892-5, Geotechnical investigation and testing - Laboratory testing of soil - Part 5: Incremental loading oedometer test. Ankara: Turkish Standard Institute - TSE, 2017.
  • [44] B. M. Das, “Advanced Soil Mechanics (1983),” Mc-GrawHill, New York, 1983.
  • [45] R. D. Holtz, W. D. Kovacs, and T. C. Sheahan, An Introduction to Geotechnical Engineering. 2nd Edition, 2nd ed. New Jersey: Pearson, 2010.
  • [46] T. W. Lambe and R. V. Whitman, Soil Mechanics. New York: John Wiley & Sons Inc, 1969. Accessed: Jun. 18, 2022. [Online]. Available: https://www.wiley.com/en-gb/Soil+Mechanics-p-9780471511922
  • [47] Z. Wu, Y. Deng, Y. Cui, A. Zhou, Q. Feng, and H. Xue, “Experimental Study on Creep Behavior in Oedometer Tests of Reconstituted Soft Clays,” International Journal of Geomechanics, vol. 19, Mar. 2019, doi: 10.1061/(ASCE)GM.1943-5622.0001357.
  • [48] Y. F. Deng, Y. J. Cui, A. M. Tang, X. L. Li, and X. Sillen, “An experimental study on the secondary deformation of Boom clay,” Appl Clay Sci, vol. 59–60, pp. 19–25, 2012, doi: 10.1016/j.clay.2012.02.001.
  • [49] N. Jiang, C. Wang, Q. Wu, and S. Li, “Influence of structure and liquid limit on the secondary compressibility of soft soils,” J Mar Sci Eng, vol. 8, no. 9, p. 627, 2020, doi: 10.3390/JMSE8090627.
  • [50] C. Di Maio, L. Santoli, and P. Schiavone, “Volume change behaviour of clays: The influence of mineral composition, pore fluid composition and stress state,” Mechanics of Materials, vol. 36, no. 5–6, pp. 435–451, 2004, doi: 10.1016/S0167-6636(03)00070-X.
  • [51] D. W. Taylor and W. Merchant, “A Theory of Clay Consolidation Accounting for Secondary Compression,” Journal of Mathematics and Physics, vol. 19, no. 1–4, pp. 167–185, Apr. 1940, doi: 10.1002/sapm1940191167.
  • [52] S. M. Rao, T. Thyagaraj, and H. R. Thomas, “Swelling of compacted clay under osmotic gradients,” Géotechnique, vol. 56, no. 10, pp. 707–713, Dec. 2006, doi: 10.1680/geot.2006.56.10.707.
  • [53] A. J. Staverman, “The theory of measurement of osmotic pressure,” Recueil des Travaux Chimiques des Pays-Bas, vol. 70, no. 4, pp. 344–352, Jan. 1951, doi: https://doi.org/10.1002/recl.19510700409.
  • [54] S. L. Barbour, “Osmotic Flow and Volume Change in Clay Soils,” Dissertation, University of Saskatchewan, 1986. Accessed: Jun. 15, 2022. [Online]. Available: https://harvest.usask.ca/bitstream/handle/10388/5729/Barbour_Sidney_Lee_1987.pdf?sequence=3&isAllowed=y

Kil zeminlerde harici yükün ozmotik sikişmaya etkisi

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.22379

Abstract

Kil türü zeminler, tuzlu su taşkınları, kanalizasyon sızıntısı vb. nedeniyle tuzlu su ile temas edebilir. Daha sonra tuzlu su ile etkileşime giren killerde ozmotik etkiyle ilave oturmalar meydana gelebilir. Bu amaçla biri düşük plastisiteli (CL) ve diğeri yüksek plastisiteli (CH) olmak üzere iki doğal kil numunesi üzerinde bir dizi ödometre deneyi yapıldı. Düşük plastisiteli numuneler yüksek kaolin grubu mineral içeriğine sahipken, yüksek plastisiteli numuneler yüksek smektit grubu mineral içeriğine sahiptir. Saf su ile hazırlanan ve belirli konsolidasyon basınçlarına kadar (12.5kPa, 50kPa ve 200kPa) yüklenen numuneler tuzlu su çözeltilerine (0.1M, 0.25M, 1M ve 2M NaCl ve CaCl2 çözeltileri) maruz bırakılmış ve yük altında ozmotik sıkışma davranışları incelenmiştir. Deneyler tamamlanan numunelerden elde edilen SEM görüntüleri ve EDX verileri kullanılarak yapısal ve dokusal değişiklikler incelenmeye çalışılmıştır. Dokusu tuzun etkisiyle değişikliğe uğramayan düşük plastisiteli kilin sıkıştırılmasında mekanik kuvvetlerin baskın olduğu gözlemlenmiştir. Bu nedenle ozmotik kaynaklı sıkışma ve doku değişiklikleri ihmal edilebilecek seviyelerde gözlenmiştir. Yüksek plastisiteli numunede (yüksek smektit içeriği) en yüksek ozmotik sıkışmanın 50 kPa'da meydana geldiği gözlenmiştir. Bu nedenle dış yüklerin ve ozmotik kuvvetlerin neden olduğu yapısal yük dengesinin önemli olduğunu ortaya konmuştur.

References

  • [1] K. Satake, “Tsunamis,” in Earthquake Seismology, vol. 4, G. Schubert, Ed., 2007, pp. 483–511. doi: 10.1016/B978-044452748-6.00078-X.
  • [2] M. A. Baptista and J. M. Miranda, “Revision of the Portuguese catalog of tsunamis,” Natural Hazards and Earth System Sciences, vol. 9, no. 1, pp. 25–42, 2009, doi: 10.5194/nhess-9-25-2009.
  • [3] S. Yolsal-Çevikbilen and T. Taymaz, “Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean,” Tectonophysics, vol. 536–537, pp. 61–100, 2012, doi: https://doi.org/10.1016/j.tecto.2012.02.019.
  • [4] J. P. Terry, N. Winspear, J. Goff, and P. H. H. Tan, “Past and potential tsunami sources in the South China Sea: A brief synthesis,” Earth Sci Rev, vol. 167, pp. 47–61, 2017, doi: https://doi.org/10.1016/j.earscirev.2017.02.007.
  • [5] L. Cordrie, A. Gailler, P. Heinrich, P. Briole, and A. Ganas, “The July 20, 2017 Mw = 6.6 Bodrum-Kos Earthquake, Southeast Aegean Sea: Contribution of the Tsunami Modeling to the Assessment of the Fault Parameters,” Pure Appl Geophys, vol. 178, no. 12, pp. 4865–4889, 2021, doi: 10.1007/s00024-021-02766-3.
  • [6] C. Yavuz, K. Yilmaz, and G. Onder, “Combined Hazard Analysis of Flood and Tsunamis on The Western Mediterranean Coast of Turkey,” Natural Hazards and Earth System Sciences Discussions, vol. 2022, pp. 1–20, Jun. 2022, doi: 10.5194/nhess-2022-121.
  • [7] NASA, “Sea Surface Salinity From Space - NASA,” https://salinity.oceansciences.org/. Accessed: Nov. 16, 2022. [Online]. Available: https://salinity.oceansciences.org/highlights04.htm
  • [8] C. Di Maio, “Influence of Pore Fluid Composition on Volume Change Behaviour of Clays Exposed to the Same Fluid as the Pore Fluid,” in Chemo-Mechanical Couplings in Porous Media Geomechanics and Biomechanics, B. Loret and J. M. Huyghe, Eds., Vienna: Springer Vienna, 2004, pp. 1–17. doi: 10.1007/978-3-7091-2778-0_1.
  • [9] A. Ş. Zaimoğlu, F. Hattatoğlu, and R. K. Akbulut, “Yüke maruz ince daneli zeminlerin donma-çözülme davranışı,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 19, no. 3, pp. 117–120, 2013, doi: 10.5505/pajes.2013.35744.
  • [10] S. Siddiqua, G. Siemens, J. Blatz, A. Man, and B. F. Lim, “Influence of Pore Fluid Chemistry on the Mechanical Properties of Clay-Based Materials,” Geotechnical and Geological Engineering, vol. 32, no. 4, pp. 1029–1042, 2014, doi: 10.1007/s10706-014-9778-z.
  • [11] S. Akbulut, Z. N. Kurt, and S. Arasan, “Surfactant modified clays’ consistency limits and contact angles,” Earth Sciences Research Journal, vol. 16, no. 2, pp. 13–19, 2012.
  • [12] B. K. Dahal and J.-J. Zheng, “Compression behavior of reconstituted clay: A study on black clay,” Journal of Nepal Geological Society, vol. 55, no. 1, pp. 55–60, 2018, doi: 10.3126/jngs.v55i1.22789.
  • [13] R. M. Schmitz, C. Schroeder, and R. Charlier, “Chemo–mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits,” Appl Clay Sci, vol. 26, no. 1–4, pp. 351–358, Aug. 2004, doi: 10.1016/j.clay.2003.12.015.
  • [14] H. Bayesteh, M. Sharifi, and A. Haghshenas, “Effect of stone powder on the rheological and mechanical performance of cement-stabilized marine clay/sand,” Constr Build Mater, vol. 262, p. 120792, Nov. 2020, doi: 10.1016/J.CONBUILDMAT.2020.120792.
  • [15] H. Bayesteh and A. Bayat, “Volume change behavior of reconstituted marine clay: effect of initial and leaching pore fluid salinity,” Environ Earth Sci, vol. 80, no. 6, p. 235, 2021, doi: 10.1007/s12665-021-09533-6.
  • [16] Naeini M. A. and Jahanfar S. A., “Effect of Salt Solution and Plasticity Index on undrain Shear Strength of Clays,” International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 5, pp. 92–96, 2011, doi: https://doi.org/10.5281/zenodo.1058403.
  • [17] Naeini M. A. and Jahanfar S. A., “Effect of Salt Solution and Plasticity Index on undrain Shear Strength of Clays,” International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 5, pp. 92–96, Jan. 2011, doi: https://doi.org/10.5281/zenodo.1058403.
  • [18] K. R. Reddy, P. Yaghoubi, and Y. Yukselen-Aksoy, “Effects of biochar amendment on geotechnical properties of landfill cover soil,” Waste Management & Research, vol. 33, no. 6, pp. 524–532, 2015, doi: 10.1177/0734242X15580192.
  • [19] Ö. Çimen, H. İ. Günaydın, and S. N. Keskin, “Effect of construction waste to engineering properties of high Plasticity clay soil,” Pamukkale University Journal of Engineering Sciences, vol. 23, no. 3, pp. 250–253, 2017, doi: 10.5505/pajes.2016.81567.
  • [20] M. L. Diallo and Y. S. Ünsever, “An experimental study on the stabilization of a clay soil with construction wastes and lime,” Pamukkale University Journal of Engineering Sciences, vol. 26, no. 6, pp. 1030–1034, 2020, doi: 10.5505/pajes.2019.51436.
  • [21] H. I. Inyang, J. L. Daniels, and V. Ogunro, “Engineering controls for risk reduction at Brownfield sites,” American Society of Civil Engineers, Geo-Congress ’98, 1998, doi: https://doi.org/10.1061/9780784403891.016.
  • [22] C. H. Benson, J. N. Meegoda, R. G. Gilbert, and S. P. Clemence, “Risk-Based Corrective Action and Brownfields Restorations,” American Society of Civil Engineers, Geo-Congress ’98, Oct. 1998, doi: https://doi.org/10.1061/9780784403891.
  • [23] G. Scaringi and C. Di Maio, “Residual Shear Strength of Clayey Soils: the influence of displacement rate,” in GC Chiorean (ed.), Proc. 2nd Int. PhD Conf. Civ. Eng. & Arch, 2014, pp. 325–332. Accessed: Nov. 01, 2021. [Online]. Available: https://hdl.handle.net/11563/98898
  • [24] C. Di Maio and G. Scaringi, “Shear displacements induced by decrease in pore solution concentration on a pre-existing slip surface,” Eng Geol, vol. 200, pp. 1–9, Jan. 2016, doi: 10.1016/j.enggeo.2015.11.007.
  • [25] S. L. Barbour and D. G. Fredlund, “Mechanisms of osmotic flow and volume change in clay soils,” Canadian Geotechnical Journal, vol. 26, no. 4, pp. 551–562, Nov. 1989, doi: 10.1139/t89-068.
  • [26] C. Di Maio, “Exposure of bentonite to salt solution: Osmotic and mechanical effects,” Geotechnique, vol. 46, no. 4, pp. 695–707, 1996, doi: 10.1680/geot.1996.46.4.695.
  • [27] M. Kaczmarek and T. Hueckel, “Chemo-mechanical consolidation of clays: analytical solutions for a linearized one-dimensional problem,” Transp Porous Media, vol. 32, no. 1, pp. 49–74, 1998, doi: https://doi.org/10.1023/A:1006530405361.
  • [28] M. Olgun and M. Yıldız, “Effect of organic fluids on the geotechnical behavior of a highly plastic clayey soil,” Appl Clay Sci, vol. 48, no. 4, pp. 615–621, 2010, doi: https://doi.org/10.1016/j.clay.2010.03.015.
  • [29] T. Thyagaraj and S. M. Rao, “Osmotic swelling and osmotic consolidation behaviour of compacted expansive clay,” Geotechnical and Geological Engineering, vol. 31, no. 2, pp. 435–445, 2013, Accessed: Aug. 08, 2021. [Online]. Available: https://link.springer.com/article/10.1007/s10706-012-9596-0
  • [30] Y. Xu, G. Xiang, H. Jiang, T. Chen, and F. Chu, “Role of osmotic suction in volume change of clays in salt solution,” Appl Clay Sci, vol. 101, pp. 354–361, 2014, doi: https://doi.org/10.1016/j.clay.2014.09.006.
  • [31] D. Yang, R. Yan, T. Ma, and C. Wei, “Compressive behavior of kaolinitic clay under chemo-mechanical loadings,” Acta Geotech, vol. 18, no. 1, pp. 77–94, 2023, doi: 10.1007/s11440-022-01554-0.
  • [32] G. H. Bolt, “Physico-Chemical Analysis of the Compressibility of Pure Clays,” Géotechnique, vol. 6, no. 2, pp. 86–93, Jun. 1956, doi: 10.1680/geot.1956.6.2.86.
  • [33] A. Sridharan, “Engineering behaviour of fine grained soils—a fundamental approach,” Indian Geotechnical Journal: Thirteenth IGS Annual Lecture delivered on the occasion of its 32nd Annual General Session, pp. 447–540, 1991, Accessed: Mar. 07, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Engineering-Behaviour-of-Fine-Grained-Soils-A-A./014de1727ba69ab3fdaa8f36a55e883de2e21507?utm_source=direct_link
  • [34] S. M. Rao, A. Sridharan, and S. Chandrakaran, “Consistency Limits Behavior of Bentonites Exposed to Sea-Water,” Marine Georesources & Geotechnology, vol. 11, no. 3, pp. 213–227, 1993, doi: https://doi.org/10.1080/10641199309379919.
  • [35] A. Sridharan and Sayamurty P., “Potential-Distance Relationships of Clay-Water Systems Considering the Stern Theory,” Clays Clay Miner, vol. 44, no. 4, pp. 479–484, 1996, doi: 10.1346/CCMN.1996.0440405.
  • [36] A. Sridharan and K. Prakash, “Influence of clay mineralogy and pore-medium chemistry on clay sediment formation,” Canadian Geotechnical Journal, vol. 36, no. 5, pp. 961–966, Nov. 1999, doi: 10.1139/t99-045.
  • [37] J. K. Mitchell and K. Soga, “Fundamentals of soil Behavior,” John Wiley& Sons, Hoboken, New Jersey, USA, 2005.
  • [38] S. M. Rao and T. Thyagaraj, “Swell–compression behaviour of compacted clays under chemical gradients,” Canadian Geotechnical Journal, vol. 44, no. 5, pp. 520–532, May 2007, doi: 10.1139/t07-002.
  • [39] T. V. Bharat and A. Sridharan, “Prediction of Compressibility Data for Highly Plastic Clays Using Diffuse Double-Layer Theory,” Clays Clay Miner, vol. 63, no. 1, pp. 30–42, 2015, doi: 10.1346/CCMN.2015.0630103.
  • [40] TS EN ISO 17892-12, Geotechnical investigation and testing - Laboratory testing of soil - Part 12: Determination of liquid and plastic limits. Ankara: Turkish Standard Institute - TSE, 2018.
  • [41] TS EN ISO 17892-3, Geotechnical investigation and testing - Laboratory testing of soil - Part 3: Determination of particle density. Ankara: Turkish Standards Institute-TSE, 2016.
  • [42] TS EN ISO 17892-4, Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of particle size distribution. Ankara: Turkish Standards Institute-TSE, 2016.
  • [43] TS EN ISO 17892-5, Geotechnical investigation and testing - Laboratory testing of soil - Part 5: Incremental loading oedometer test. Ankara: Turkish Standard Institute - TSE, 2017.
  • [44] B. M. Das, “Advanced Soil Mechanics (1983),” Mc-GrawHill, New York, 1983.
  • [45] R. D. Holtz, W. D. Kovacs, and T. C. Sheahan, An Introduction to Geotechnical Engineering. 2nd Edition, 2nd ed. New Jersey: Pearson, 2010.
  • [46] T. W. Lambe and R. V. Whitman, Soil Mechanics. New York: John Wiley & Sons Inc, 1969. Accessed: Jun. 18, 2022. [Online]. Available: https://www.wiley.com/en-gb/Soil+Mechanics-p-9780471511922
  • [47] Z. Wu, Y. Deng, Y. Cui, A. Zhou, Q. Feng, and H. Xue, “Experimental Study on Creep Behavior in Oedometer Tests of Reconstituted Soft Clays,” International Journal of Geomechanics, vol. 19, Mar. 2019, doi: 10.1061/(ASCE)GM.1943-5622.0001357.
  • [48] Y. F. Deng, Y. J. Cui, A. M. Tang, X. L. Li, and X. Sillen, “An experimental study on the secondary deformation of Boom clay,” Appl Clay Sci, vol. 59–60, pp. 19–25, 2012, doi: 10.1016/j.clay.2012.02.001.
  • [49] N. Jiang, C. Wang, Q. Wu, and S. Li, “Influence of structure and liquid limit on the secondary compressibility of soft soils,” J Mar Sci Eng, vol. 8, no. 9, p. 627, 2020, doi: 10.3390/JMSE8090627.
  • [50] C. Di Maio, L. Santoli, and P. Schiavone, “Volume change behaviour of clays: The influence of mineral composition, pore fluid composition and stress state,” Mechanics of Materials, vol. 36, no. 5–6, pp. 435–451, 2004, doi: 10.1016/S0167-6636(03)00070-X.
  • [51] D. W. Taylor and W. Merchant, “A Theory of Clay Consolidation Accounting for Secondary Compression,” Journal of Mathematics and Physics, vol. 19, no. 1–4, pp. 167–185, Apr. 1940, doi: 10.1002/sapm1940191167.
  • [52] S. M. Rao, T. Thyagaraj, and H. R. Thomas, “Swelling of compacted clay under osmotic gradients,” Géotechnique, vol. 56, no. 10, pp. 707–713, Dec. 2006, doi: 10.1680/geot.2006.56.10.707.
  • [53] A. J. Staverman, “The theory of measurement of osmotic pressure,” Recueil des Travaux Chimiques des Pays-Bas, vol. 70, no. 4, pp. 344–352, Jan. 1951, doi: https://doi.org/10.1002/recl.19510700409.
  • [54] S. L. Barbour, “Osmotic Flow and Volume Change in Clay Soils,” Dissertation, University of Saskatchewan, 1986. Accessed: Jun. 15, 2022. [Online]. Available: https://harvest.usask.ca/bitstream/handle/10388/5729/Barbour_Sidney_Lee_1987.pdf?sequence=3&isAllowed=y
There are 54 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Uğur Eren Yurtcan

Selim Altun

Early Pub Date November 2, 2025
Publication Date November 20, 2025
Submission Date July 18, 2024
Acceptance Date August 19, 2025
Published in Issue Year 2026 Volume: 32 Issue: 3

Cite

APA Yurtcan, U. E., & Altun, S. (2025). Effect of external load on osmotic compression in clay soils. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(3). https://doi.org/10.5505/pajes.2025.22379
AMA Yurtcan UE, Altun S. Effect of external load on osmotic compression in clay soils. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(3). doi:10.5505/pajes.2025.22379
Chicago Yurtcan, Uğur Eren, and Selim Altun. “Effect of External Load on Osmotic Compression in Clay Soils”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 3 (November 2025). https://doi.org/10.5505/pajes.2025.22379.
EndNote Yurtcan UE, Altun S (November 1, 2025) Effect of external load on osmotic compression in clay soils. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 3
IEEE U. E. Yurtcan and S. Altun, “Effect of external load on osmotic compression in clay soils”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi: 10.5505/pajes.2025.22379.
ISNAD Yurtcan, Uğur Eren - Altun, Selim. “Effect of External Load on Osmotic Compression in Clay Soils”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/3 (November2025). https://doi.org/10.5505/pajes.2025.22379.
JAMA Yurtcan UE, Altun S. Effect of external load on osmotic compression in clay soils. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.22379.
MLA Yurtcan, Uğur Eren and Selim Altun. “Effect of External Load on Osmotic Compression in Clay Soils”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi:10.5505/pajes.2025.22379.
Vancouver Yurtcan UE, Altun S. Effect of external load on osmotic compression in clay soils. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(3).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif