Research Article
BibTex RIS Cite

Improvement of machine learning-based diabetes diagnosis via resampling techniques

Year 2026, Volume: 32 Issue: 3

Abstract

The objective of this study is to enhance the accuracy of diabetes diagnosis through the utilisation of machine learning techniques and resampling methods. The imbalanced nature of diabetes datasets presents a significant challenge for traditional classification algorithms, which often struggle to accurately predict results. In order to enhance the efficacy of the model, a comparative analysis was conducted to assess the performance of a range of over-sampling and under-sampling techniques, including SMOTE, ADASYN, Borderline SMOTE, SVM SMOTE, Random Under Sampler, Near Miss, One Sided Selection, Neighbourhood Cleaning Rule, Edited Nearest Neighbours, Instance Hardness Threshold, AllKNN and Tomek Links. The aforementioned techniques were then applied to the Decision Tree, Random Forest, K-Nearest Neighbours, AdaBoost, Extra Tree Classifier, and machine learning classifiers, and their performance was evaluated using the accuracy, recall, precision, F-Score, and AUC-ROC performance metrics. The SVMSMOTE resampling technique was identified as the most successful method, achieving 99.06% accuracy when used in combination with the decision tree classifier. The findings demonstrate that the incorporation of resampling techniques markedly enhances diagnostic proficiency and yields more dependable forecasts. This research makes a significant contribution to the field of medical informatics, providing a robust framework for diabetes diagnosis and offering valuable insights into the application of machine learning in healthcare.

References

  • [1] International Diabetes Federation. “IDF Diabetes Atlas”. https://diabetesatlas.org. (11.11.2024)
  • [2] International Diabetes Federation. “Diabetes Now Affects One in 10 Adults Worldwide,” https://idf.org/news/diabetes-now-affects-one-in-10-adults-worldwide/. (11.11.2024)
  • [3] Özmen T, Kuzu Ü, Koçyiğit Y, Sarnel H. “Early stage diabetes prediction by features selection with metaheuristic methods”. Pamukkale University Journal of Engineering Sciences. 29(6), 596–606, 2023.
  • [4] Pradhan N, Rani G, Dhaka VS, Poonia RC. Diabetes prediction using artificial neural network. Editors: Basant A, Valentina EB, Lakhmi CJ, Ramesh CP. Deep Learning Techniques for Biomedical and Health Informatics. 327–339, Singapore, Springer Academic Press, 2020.
  • [5] Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. “Classification and prediction of diabetes disease using machine learning paradigm”. Health Information Science and Systems. 8(1), 7–14, 2020.
  • [6] Daghistani T, Alshammari R. “Comparison of statistical logistic regression and RandomForest machine learning techniques in predicting diabetes”. Journal of Advances in Information Technology. 11(1), 78–83, 2020.
  • [7] Shuja M, Mittal S, Zaman M. “Effective prediction of type ii diabetes mellitus using data mining classifiers and SMOTE”. Advances in Computing and Intelligent Systems: Proceedings of ICACM 2019. Singapore, 14–16 December 2020.
  • [8] Butt UM, Letchmunan S, Ali M, Hassan FH, Baqir A, Sherazi HHR. “Machine learning based diabetes classification and prediction for healthcare applications”. Journal of Healthcare Engineering. 2021(1), 933–985, 2021.
  • [9] Chaves L, Marques G. “Data mining techniques for early diagnosis of diabetes: a comparative study”. Applied Sciences. 11(5), 2021.
  • [10] Kumari S, Kumar D, Mittal M. “An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier”. International Journal of Cognitive Computing in Engineering. 2(1), 40–46, 2021.
  • [11] Khanam JJ, Foo SY. “A comparison of machine learning algorithms for diabetes prediction”. ICT Express. 7(4), 432–439, 2021.
  • [12] Mesquita F, Aurício J, Marques G. “Oversampling techniques for diabetes classification: A comparative study”. IEEE 2021 International Conference on e-Health and Bioengineering. Virtual, 13 April 2021.
  • [13] Özlüer BB, Yangın M, Sarıdaş ES. “Makine Öğrenmesi Teknikleriyle Diyabet Hastalığının Sınıflandırılması”. Süleyman Demirel Üniversitesi Fen Bilim Enstitüsü Dergisi. 25(1), 112–120, 2021.
  • [14] Harman G. “Destek Vektör Makineleri ve Naive Bayes Sınıflandırma Algoritmalarını Kullanarak Diabetes Mellitus Tahmini”. European Journal of Science and Technology. 32(1), 7–13, 2021.
  • [15] Saxena R, Sharma SK, Gupta M, Sampada GC. “A novel approach for feature selection and classification of diabetes mellitus: machine learning methods”. Computational Intelligence and Neuroscience. 2022(1), 360–382, 2022.
  • [16] Mushtaq Z, Ramzan MF, Ali S, Baseer S, Samad A, Husnain M. “Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques”. Mobile Information Systems. 2022(1), 521–532, 2022.
  • [17] Özkan Y, Sarer YB, Suner A. “Diyabet tanısının tahminlenmesinde denetimli makine öğrenme algoritmalarının performans karşılaştırması”. Gümüşhane Üniversitesi Fen Bilim Enstitüsü Dergisi. 12(1), 211–226, 2022.
  • [18] Sevli̇ O. “Diyabet hastalığının farklı sınıflandırıcılar kullanılarak teşhisi”. Gazi Üniversitesi Mühendis-Mimar Fakültesi Dergisi. 38(2), 989–1002, 2022.
  • [19] Özoğur HN, Orman Z. “Sağlık Verilerinin Analizinde Veri Ön işleme Adımlarının Makine Öğrenmesi Yöntemlerinin Performansına Etkisi”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi. 16(1), 23–33, 2023.
  • [20] Ali MS, Islam MK, Das AA, Duranta DUS, Haque MF, Rahman MH. “A novel approach for best parameters selection and feature engineering to analyze and detect diabetes: Machine learning insights”. BioMed Research International. 2023(1), 1–15, 2023.
  • [21] Febrian ME, Ferdinan FX, Sendani GP, Suryanigrum KM, Yunanda R. “Diabetes prediction using supervised machine learning”. Procedia Computer Science. 216(1), 21–30, 2023.
  • [22] Khaleel FA, Bakry AM. “Diagnosis of diabetes using machine learning algorithms”. Materials Today: Proceedings. 8(1), 179–188, 2024.
  • [23] Modak SKS, Jha VK. “Diabetes prediction model using machine learning techniques”. Multimedia Tools and Applications. 83(13), 38523–38549, 2024.
  • [24] Ng BA. “En-RfRsK: An ensemble machine learning technique for prognostication of diabetes mellitus”. Egyptian Informatics Journal. 25(3), 1–8, 2024.
  • [25] Gaso MS, Mekuria RR, Khan A, Gulbarga MI, Tologonov I, Sadriddin Z. “Utilizing Machine and Deep Learning Techniques for Predicting Re-admission Cases in Diabetes Patients”. Proceedings of the International Conference on Computer Systems and Technologies. 2024(1), 76–81, 2024.
  • [26] Zarghani A. “Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission”. arXiv preprint arXiv:2406.19980, 1–21, 2024.
  • [27] Kanu DKS, Khanal M. “Implementation of Big Data Analytics on Diabetes 130-US Hospitals for year 1999–2008 for predicting patient readmission”. ResearchGate Preprint, 2023.
  • [28] Strack B, Deshazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ. “Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records”. BioMed Research International. 2014(1), 1–11, 2014.
  • [29] Janez A, Muzurovic E, Bogdanski P, Czupryniak L, Fabryova L, Fras Z. “Modern management of cardiometabolic continuum: From overweight/obesity to prediabetes/type 2 diabetes mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group”. Diabetes Ther. 15(9), 1865–1892, 2024.
  • [30] Adanur Dedeturk B, Bakir Gungor B. “Evaluation of Sub-Network search programs in epilepsy-related GWAS dataset”. Pamukkale University Journal of Engineering Sciences. 28(2), 292–298, 2022.
  • [31] Sevli O. “Farklı sınıflandırıcılar ve yeniden örnekleme teknikleri kullanılarak kalp hastalığı teşhisine yönelik karşılaştırmalı bir çalışma”. Journal of Intelligent Systems: Theory and Applications. 5(2), 92–105, 2022.
  • [32] Akgül G, Çelik AA, Ergül Aydin Z, Kamişli Öztürk Z. “Hipotiroidi Hastalığı Teşhisinde Sınıflandırma Algoritmalarının Kullanımı”. Bilişim Teknolojileri Dergisi. 13(3), 255–268, 2020.
  • [33] Kohavi R. “A study of cross-validation and bootstrap for accuracy estimation and model selection”. Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), Palais des Congrès, Montreal, Quebec, Canada, 20–25 August 1995.
  • [34] Fernández A, García S, Galar M, Prati RC, Krawczyk B, Herrera F. Learning from Imbalanced Data Sets. Cham, Switzerland, Springer, 2018.
  • [35] Charbuty B, Abdulazeez A. “Classification based on decision tree algorithm for machine learning”. Journal of Applied Science and Technology Trends. 2(1), 20–28, 2021.
  • [36] Cesur E, Efe C. “Kampüs içi kapalı alanlarda hava kalitesinin modellenmesi ve karar destek sistemi geliştirilmesi”. Zeki Sistemler Teori ve Uygulamaları Dergisi. 6(2), 181–190, 2023.
  • [37] Turan T. “Optimize edilmiş denetimli öğrenme algoritmaları ile obezite analizi ve tahmini”. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 14(2), 301–312, 2023.
  • [38] Yapıcı İŞ, Arslan RU, Erkaymaz O. “Kalp yetmezliği tanılı hastaların hayatta kalma tahmininde topluluk makine öğrenme yöntemlerinin performans analizi”. Karaelmas Fen ve Mühendislik Dergisi. 14(1), 59–69, 2024.
  • [39] Shan W, Li D, Liu S, Song M, Xiao S, Zhang H. “A random feature mapping method based on the AdaBoost algorithm and results fusion for enhancing classification performance”. Expert Systems with Applications. 256(1), 124902, 2024.
  • [40] Zhijun W, Yuqi L, Meng Y. “A hybrid intrusion detection method based on convolutional neural network and AdaBoost”. China Communications. 1–10, 2024.
  • [41] Hama SMA. “Diabetes type 2 classification using machine learning algorithms with up-sampling technique”. Journal of Electrical Systems and Information Technology. 10(8), 1–10, 2023.
  • [42] Arslan RU, Yapıcı İŞ. “Farklı örnekleme tekniklerine ve farklı sınıflandırıcılara dayanarak kalp yetmezliği tanılı hastaların sağkalımlarının incelenmesi”. EMO Bilimsel Dergi. 14(2), 35–47, 2024.
  • [43] Akalın F, Yumuşak N. “Classification of acute leukaemias with a hybrid use of feature selection algorithms and deep learning-based architectures”. Pamukkale University Journal of Engineering Sciences. 29(3), 256–263, 2023.

Makine Öğrenmesi Tabanlı Diyabet Teşhisinin Yeniden Örnekleme Teknikleri ile İyileştirilmesi

Year 2026, Volume: 32 Issue: 3

Abstract

Bu çalışmanın amacı, makine öğrenimi teknikleri ve yeniden örnekleme yöntemlerini kullanarak diyabet teşhisinin doğruluğunu artırmaktır. Diyabet veri setlerinin dengesiz yapısı, sonuçları doğru bir şekilde tahmin etmekte zorlanan geleneksel sınıflandırma algoritmaları için önemli bir zorluk teşkil etmektedir. Modelin etkinliğini artırmak amacıyla, SMOTE, ADASYN, Borderline SMOTE, SVM SMOTE, Random Under Sampler, Near Miss, One Sided Selection, Neighbourhood Cleaning Rule, Edited Nearest Neighbours, Instance Hardness Threshold, AllKNN ve Tomek Links dahil olmak üzere bir dizi aşırı örnekleme ve düşük örnekleme tekniklerinin performansını değerlendirmek için karşılaştırmalı bir analiz yapılmıştır. Yukarıda bahsedilen teknikler daha sonra Karar Ağacı, Rastgele Orman, K-En Yakın Komşular, AdaBoost, Ekstra Ağaç Sınıflandırıcı ve makine öğrenimi sınıflandırıcılarına uygulanmış ve performansları doğruluk, geri çağırma, kesinlik, F-Skoru ve AUC-ROC performans ölçütleri kullanılarak değerlendirilmiştir. SVMSMOTE yeniden örnekleme tekniği, karar ağacı sınıflandırıcısı ile birlikte kullanıldığında %99,06 doğruluk elde ederek en başarılı yöntem olarak belirlenmiştir. Bulgular, yeniden örnekleme tekniklerinin dahil edilmesinin teşhis yeterliliğini önemli ölçüde artırdığını ve daha güvenilir tahminler sağladığını göstermektedir. Bu araştırma, diyabet teşhisi için sağlam bir çerçeve sağlayarak ve makine öğreniminin sağlık hizmetlerinde uygulanmasına ilişkin değerli bilgiler sunarak tıbbi bilişim alanına önemli bir katkıda bulunmaktadır.

References

  • [1] International Diabetes Federation. “IDF Diabetes Atlas”. https://diabetesatlas.org. (11.11.2024)
  • [2] International Diabetes Federation. “Diabetes Now Affects One in 10 Adults Worldwide,” https://idf.org/news/diabetes-now-affects-one-in-10-adults-worldwide/. (11.11.2024)
  • [3] Özmen T, Kuzu Ü, Koçyiğit Y, Sarnel H. “Early stage diabetes prediction by features selection with metaheuristic methods”. Pamukkale University Journal of Engineering Sciences. 29(6), 596–606, 2023.
  • [4] Pradhan N, Rani G, Dhaka VS, Poonia RC. Diabetes prediction using artificial neural network. Editors: Basant A, Valentina EB, Lakhmi CJ, Ramesh CP. Deep Learning Techniques for Biomedical and Health Informatics. 327–339, Singapore, Springer Academic Press, 2020.
  • [5] Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. “Classification and prediction of diabetes disease using machine learning paradigm”. Health Information Science and Systems. 8(1), 7–14, 2020.
  • [6] Daghistani T, Alshammari R. “Comparison of statistical logistic regression and RandomForest machine learning techniques in predicting diabetes”. Journal of Advances in Information Technology. 11(1), 78–83, 2020.
  • [7] Shuja M, Mittal S, Zaman M. “Effective prediction of type ii diabetes mellitus using data mining classifiers and SMOTE”. Advances in Computing and Intelligent Systems: Proceedings of ICACM 2019. Singapore, 14–16 December 2020.
  • [8] Butt UM, Letchmunan S, Ali M, Hassan FH, Baqir A, Sherazi HHR. “Machine learning based diabetes classification and prediction for healthcare applications”. Journal of Healthcare Engineering. 2021(1), 933–985, 2021.
  • [9] Chaves L, Marques G. “Data mining techniques for early diagnosis of diabetes: a comparative study”. Applied Sciences. 11(5), 2021.
  • [10] Kumari S, Kumar D, Mittal M. “An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier”. International Journal of Cognitive Computing in Engineering. 2(1), 40–46, 2021.
  • [11] Khanam JJ, Foo SY. “A comparison of machine learning algorithms for diabetes prediction”. ICT Express. 7(4), 432–439, 2021.
  • [12] Mesquita F, Aurício J, Marques G. “Oversampling techniques for diabetes classification: A comparative study”. IEEE 2021 International Conference on e-Health and Bioengineering. Virtual, 13 April 2021.
  • [13] Özlüer BB, Yangın M, Sarıdaş ES. “Makine Öğrenmesi Teknikleriyle Diyabet Hastalığının Sınıflandırılması”. Süleyman Demirel Üniversitesi Fen Bilim Enstitüsü Dergisi. 25(1), 112–120, 2021.
  • [14] Harman G. “Destek Vektör Makineleri ve Naive Bayes Sınıflandırma Algoritmalarını Kullanarak Diabetes Mellitus Tahmini”. European Journal of Science and Technology. 32(1), 7–13, 2021.
  • [15] Saxena R, Sharma SK, Gupta M, Sampada GC. “A novel approach for feature selection and classification of diabetes mellitus: machine learning methods”. Computational Intelligence and Neuroscience. 2022(1), 360–382, 2022.
  • [16] Mushtaq Z, Ramzan MF, Ali S, Baseer S, Samad A, Husnain M. “Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques”. Mobile Information Systems. 2022(1), 521–532, 2022.
  • [17] Özkan Y, Sarer YB, Suner A. “Diyabet tanısının tahminlenmesinde denetimli makine öğrenme algoritmalarının performans karşılaştırması”. Gümüşhane Üniversitesi Fen Bilim Enstitüsü Dergisi. 12(1), 211–226, 2022.
  • [18] Sevli̇ O. “Diyabet hastalığının farklı sınıflandırıcılar kullanılarak teşhisi”. Gazi Üniversitesi Mühendis-Mimar Fakültesi Dergisi. 38(2), 989–1002, 2022.
  • [19] Özoğur HN, Orman Z. “Sağlık Verilerinin Analizinde Veri Ön işleme Adımlarının Makine Öğrenmesi Yöntemlerinin Performansına Etkisi”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi. 16(1), 23–33, 2023.
  • [20] Ali MS, Islam MK, Das AA, Duranta DUS, Haque MF, Rahman MH. “A novel approach for best parameters selection and feature engineering to analyze and detect diabetes: Machine learning insights”. BioMed Research International. 2023(1), 1–15, 2023.
  • [21] Febrian ME, Ferdinan FX, Sendani GP, Suryanigrum KM, Yunanda R. “Diabetes prediction using supervised machine learning”. Procedia Computer Science. 216(1), 21–30, 2023.
  • [22] Khaleel FA, Bakry AM. “Diagnosis of diabetes using machine learning algorithms”. Materials Today: Proceedings. 8(1), 179–188, 2024.
  • [23] Modak SKS, Jha VK. “Diabetes prediction model using machine learning techniques”. Multimedia Tools and Applications. 83(13), 38523–38549, 2024.
  • [24] Ng BA. “En-RfRsK: An ensemble machine learning technique for prognostication of diabetes mellitus”. Egyptian Informatics Journal. 25(3), 1–8, 2024.
  • [25] Gaso MS, Mekuria RR, Khan A, Gulbarga MI, Tologonov I, Sadriddin Z. “Utilizing Machine and Deep Learning Techniques for Predicting Re-admission Cases in Diabetes Patients”. Proceedings of the International Conference on Computer Systems and Technologies. 2024(1), 76–81, 2024.
  • [26] Zarghani A. “Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission”. arXiv preprint arXiv:2406.19980, 1–21, 2024.
  • [27] Kanu DKS, Khanal M. “Implementation of Big Data Analytics on Diabetes 130-US Hospitals for year 1999–2008 for predicting patient readmission”. ResearchGate Preprint, 2023.
  • [28] Strack B, Deshazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ. “Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records”. BioMed Research International. 2014(1), 1–11, 2014.
  • [29] Janez A, Muzurovic E, Bogdanski P, Czupryniak L, Fabryova L, Fras Z. “Modern management of cardiometabolic continuum: From overweight/obesity to prediabetes/type 2 diabetes mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group”. Diabetes Ther. 15(9), 1865–1892, 2024.
  • [30] Adanur Dedeturk B, Bakir Gungor B. “Evaluation of Sub-Network search programs in epilepsy-related GWAS dataset”. Pamukkale University Journal of Engineering Sciences. 28(2), 292–298, 2022.
  • [31] Sevli O. “Farklı sınıflandırıcılar ve yeniden örnekleme teknikleri kullanılarak kalp hastalığı teşhisine yönelik karşılaştırmalı bir çalışma”. Journal of Intelligent Systems: Theory and Applications. 5(2), 92–105, 2022.
  • [32] Akgül G, Çelik AA, Ergül Aydin Z, Kamişli Öztürk Z. “Hipotiroidi Hastalığı Teşhisinde Sınıflandırma Algoritmalarının Kullanımı”. Bilişim Teknolojileri Dergisi. 13(3), 255–268, 2020.
  • [33] Kohavi R. “A study of cross-validation and bootstrap for accuracy estimation and model selection”. Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), Palais des Congrès, Montreal, Quebec, Canada, 20–25 August 1995.
  • [34] Fernández A, García S, Galar M, Prati RC, Krawczyk B, Herrera F. Learning from Imbalanced Data Sets. Cham, Switzerland, Springer, 2018.
  • [35] Charbuty B, Abdulazeez A. “Classification based on decision tree algorithm for machine learning”. Journal of Applied Science and Technology Trends. 2(1), 20–28, 2021.
  • [36] Cesur E, Efe C. “Kampüs içi kapalı alanlarda hava kalitesinin modellenmesi ve karar destek sistemi geliştirilmesi”. Zeki Sistemler Teori ve Uygulamaları Dergisi. 6(2), 181–190, 2023.
  • [37] Turan T. “Optimize edilmiş denetimli öğrenme algoritmaları ile obezite analizi ve tahmini”. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 14(2), 301–312, 2023.
  • [38] Yapıcı İŞ, Arslan RU, Erkaymaz O. “Kalp yetmezliği tanılı hastaların hayatta kalma tahmininde topluluk makine öğrenme yöntemlerinin performans analizi”. Karaelmas Fen ve Mühendislik Dergisi. 14(1), 59–69, 2024.
  • [39] Shan W, Li D, Liu S, Song M, Xiao S, Zhang H. “A random feature mapping method based on the AdaBoost algorithm and results fusion for enhancing classification performance”. Expert Systems with Applications. 256(1), 124902, 2024.
  • [40] Zhijun W, Yuqi L, Meng Y. “A hybrid intrusion detection method based on convolutional neural network and AdaBoost”. China Communications. 1–10, 2024.
  • [41] Hama SMA. “Diabetes type 2 classification using machine learning algorithms with up-sampling technique”. Journal of Electrical Systems and Information Technology. 10(8), 1–10, 2023.
  • [42] Arslan RU, Yapıcı İŞ. “Farklı örnekleme tekniklerine ve farklı sınıflandırıcılara dayanarak kalp yetmezliği tanılı hastaların sağkalımlarının incelenmesi”. EMO Bilimsel Dergi. 14(2), 35–47, 2024.
  • [43] Akalın F, Yumuşak N. “Classification of acute leukaemias with a hybrid use of feature selection algorithms and deep learning-based architectures”. Pamukkale University Journal of Engineering Sciences. 29(3), 256–263, 2023.
There are 43 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other)
Journal Section Research Article
Authors

İrem Şenyer Yapıcı

Rukiye Arslan

Mustafa Alptekin Engin

Early Pub Date November 2, 2025
Publication Date November 19, 2025
Submission Date November 26, 2024
Acceptance Date August 20, 2025
Published in Issue Year 2026 Volume: 32 Issue: 3

Cite

APA Şenyer Yapıcı, İ., Arslan, R., & Engin, M. A. (2025). Improvement of machine learning-based diabetes diagnosis via resampling techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(3). https://doi.org/10.5505/pajes.2025.52882
AMA Şenyer Yapıcı İ, Arslan R, Engin MA. Improvement of machine learning-based diabetes diagnosis via resampling techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(3). doi:10.5505/pajes.2025.52882
Chicago Şenyer Yapıcı, İrem, Rukiye Arslan, and Mustafa Alptekin Engin. “Improvement of Machine Learning-Based Diabetes Diagnosis via Resampling Techniques”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 3 (November 2025). https://doi.org/10.5505/pajes.2025.52882.
EndNote Şenyer Yapıcı İ, Arslan R, Engin MA (November 1, 2025) Improvement of machine learning-based diabetes diagnosis via resampling techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 3
IEEE İ. Şenyer Yapıcı, R. Arslan, and M. A. Engin, “Improvement of machine learning-based diabetes diagnosis via resampling techniques”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi: 10.5505/pajes.2025.52882.
ISNAD Şenyer Yapıcı, İrem et al. “Improvement of Machine Learning-Based Diabetes Diagnosis via Resampling Techniques”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/3 (November2025). https://doi.org/10.5505/pajes.2025.52882.
JAMA Şenyer Yapıcı İ, Arslan R, Engin MA. Improvement of machine learning-based diabetes diagnosis via resampling techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.52882.
MLA Şenyer Yapıcı, İrem et al. “Improvement of Machine Learning-Based Diabetes Diagnosis via Resampling Techniques”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi:10.5505/pajes.2025.52882.
Vancouver Şenyer Yapıcı İ, Arslan R, Engin MA. Improvement of machine learning-based diabetes diagnosis via resampling techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(3).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif