Research Article
BibTex RIS Cite

Bir üniversite binasındaki uçucu organik bileşiklerin düzeyleri, kaynakları ve sağlık riskleri

Year 2026, Volume: 32 Issue: 3

Abstract

Bu çalışma kapsamında bir üniversite binasındaki seçili 21 farklı mekandan (4 dış ortam, 2 derslik, 3 ofis, 4 koridor ve 8 laboratuvar) pasif örnekleme tüpleri kullanılarak uçucu organik bileşik(UOB) örnekleri toplanmış ve toplanan örneklerdeki UOBlerin konsantrasyonları, kaynakları ve potansiyel sağlık riskleri araştırılmıştır. Çalışma, 27.02-03.03.2017 ve 08-12.05.2017 tarihlerinde olmak üzere iki farklı örnekleme döneminde gerçekleştirilmiş ve toplamda 52 adet numune analiz edilmiştir. Yaz mevsiminde hekzan %64.71 ile en fazla bulunan bileşik olurken, hekzanı 2,4-dimetilpentan (%12.93), toluen(%4.85), siklohekzan (%2.42) takip etmiştir. Yaz mevsimine benzer şekilde hekzan %32.74 ile kışın enfazla bulunan organik bileşik olmuştur. Hekzanı 2,4-dimetilpentan(%19.53), siklohekzan (%8.39) ve benzen (%7.35) takip etmiştir. Çalışmada, yaz aylarındaki toplam UOB konsantrasyonunun kış aylarına kıyasla yaklaşık iki kat daha yüksek olduğu görülmüştür. Mevsimsel faktörler ve kaynaklardaki değişimin kirletici konsantrasyonları üzerinde etkili olduğu anlaşılmıştır. Ortalama İç mekan/Dış ortam (İ/D) oranı baz alındığında ise laboratuvarların iç mekanlar için önemli bir kaynak olduğu görülmektedir. Yapılan kaynak belirleme çalışması sonucunda ise UOB’lerin oluşumuna sebebiyet veren beş faktör belirlenmiştir. En önemli kaynağin (toplam varyansın %28.4’ni açıklayan) laboratuvarlarda kullanılan çözücüler olduğu görülmüştür. Ayrıca bu çalışmada binayı kullanan insan grupları için risk analizi yapılmış ve laboratuvarların entegre ofis olarak kullanılması durumunda araştırma görevlisi ve lisansüstü öğrenciler için kanserojenik risklerin tolere edilebilir limitten (1E-06) sırasıyla 12 ve 1.2 kat daha fazla olduğu görülmüştür. Bu sonuçlar, iç hava kalitesinin iyileştirilmesi için etkili havalandırma stratejilerinin uygulanması ve UOB kaynaklarının kontrolüne yönelik acil müdahalelerin gerekliliğini göstermektedir.

References

  • [1] Brown SK. “Volatile organic pollutants in new and established buildings in Melbourne, Australia”. Indoor Air, 12(1), 55–63, 2002.
  • [2] Godwin C, Batterman S. “Indoor air quality in Michigan schools”. Indoor Air, 17(2), 109–121, 2007.
  • [3] Saraga D, Pateraki S, Papadopoulos A, Vasilakos C, Maggos T. “Studying the indoor air quality in three nonresidential environments of different use: A museum, a printery industry and an office”. Building and Environment, 46(11), 2333–2341, 2011.
  • [4] Liu N, Bu Z, Liu W, Kan H, Zhao Z, Deng F, Zhang Y. “Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis”. Indoor Air, 32(5), 1–15, 2022.
  • [5] Babayiǧit MA, Bakir B, Tekbaş ÖF, Oǧur R, Kiliç A, Ulus S. “Indoor air quality in primary schools in Keçiören, Ankara”. Turkish Journal of Medical Sciences, 44(1), 137–144, 2014.
  • [6] Madureira J. “Indoor air quality in schools and its relationship with children’s respiratory symptoms”. Atmospheric Environment, 118, 145–156, 2015.
  • [7] Mishra N, Bartsch J, Ayoko GA, Salthammer T, Morawska L. “Volatile Organic Compounds: Characteristics, distribution and sources in urban schools”. Atmospheric Environment, 106, 485–491, 2015.
  • [8] Zhang G, Spickett J, Rumchev K, Lee AH, Stick S. “Indoor environmental quality in a ‘low allergen’ school and three standard primary schools in Western Australia”. Indoor Air, 16(1), 74–80, 2006.
  • [9] Verriele M, Schoemaecker C, Hanoune B, Leclerc N, Germain S, Gaudion V, Locoge N. “The MERMAID study: indoor and outdoor average pollutant concentrations in 10 low-energy school buildings in France”. Indoor Air, 26(5), 702–713, 2016.
  • [10] Sofuoglu SC, Aslan G, Inal F, Sofuoglu A. “An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools”. International Journal of Hygiene and Environmental Health, 214(1), 36–46, 2011.
  • [11] Rumchev K, Ourangui R, Bertolatti D, Spickett J. “Indoor air quality in old and new schools”. WIT Transactions on Biomedicine and Health, 5, 25–32, 2007.
  • [12] Onat B, Yaşar G, Uzun B, Ayvaz C, Alver Şahin Ü. “Indoor environmental quality in the university laboratories”. Pamukkale University Journal of Engineering Sciences, 29(6), 642–649, 2023.
  • [13] Kang J, Liu J, Pei J. “The indoor volatile organic compound (VOC) characteristics and source identification in a new university campus in Tianjin, China”. Journal of the Air and Waste Management Association, 67(6), 725–737, 2017.
  • [14] Allou L, Marchand C, Mirabel P, Le Calvé S. “Aldehydes and BTEX measurements and exposures in university libraries in Strasbourg (France)”. Indoor and Built Environment, 17(2), 138–145, 2008.
  • [15] Kolarik J, Toftum J, Kabrhel M, Jordan F, Geiss O, Kabele K. “Field measurements of perceived air quality and concentration of volatile organic compounds in four offices of the university building”. Indoor and Built Environment, 24(8), 1048–1058, 2015.
  • [16] Solomon SJ, Schade GW, Kuttippurath J, Ladstätter-Weissenmayer A, Burrows JP. “VOC concentrations in an indoor workplace environment of a university building”. Indoor and Built Environment, 17(3), 260–268, 2008.
  • [17] Akal D, Yurdakul S, Civan MY, Tuncel G, Ersan HY. “Sources of Volatile Organic Compounds in a University Building”. Environmental Forensics, 16(2), 173–185, 2015.
  • [18] Goodman NB, Wheeler AJ, Paevere PJ, Selleck PW, Cheng M, Steinemann A. “Indoor volatile organic compounds at an Australian university”. Building and Environment, 135, 344–351, 2018.
  • [19] Ho SSH, Ip HSS, Ho KF, Ng LPT, Dai WT, Cao J, Ho LB. “Evaluation of hazardous airborne carbonyls on a university campus in southern China”. Journal of the Air and Waste Management Association, 64(8), 903–916, 2014.
  • [20] Yurdakul S, Civan M, Kuntasal ÖO, Tuncel G. “Temporal variations of BTX compounds in Bursa/Turkey atmosphere”. International Journal of Global Warming, 5(3), 326–344, 2013.
  • [21] Yılmaz Civan M, Yurdakul S, Tuncel G. “Improvement of uptake rate equations depending on meteorological conditions for 25 volatile organic compounds”. Talanta, 99, 720–729, 2012.
  • [22] Guo H, Wang T, Louie PKK. “Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model”. Environmental Pollution, 129(3), 489–498, 2004.
  • [23] Abdul-Wahab SA, Bakheit CS, Al-Alawi SM. “Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations”. Environmental Modelling and Software, 20(10), 1263–1271, 2005.
  • [24] Guo H, Lee SC, Louie PKK, Ho KF. “Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong”. Chemosphere, 57(10), 1363–1372, 2004.
  • [25] Martínez De Yuso A, Izquierdo MT, Valenciano R, Rubio B. “Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes”. Fuel Processing Technology, 110, 1–7, 2013.
  • [26] Xiong J, Wei W, Huang S, Zhang Y. “Association between the emission rate and temperature for chemical pollutants in building materials: General correlation and understanding”. Environmental Science and Technology, 47(15), 8540–8547, 2013.
  • [27] Liu C, Huang X, Li J. “Outdoor benzene highly impacts indoor concentrations globally”. Science of the Total Environment, 720, 137640, 2020.
  • [28] Katiyar V, Khare M. “Horizontal Measurements of SO₂, NO₂ and SPM in Indoor Air and relationship to Outdoor concentration”. Office, (2), 2007.
  • [29] Zabiegała B. “Organic compounds in indoor environments”. Polish Journal of Environmental Studies, 15(3), 383–393, 2006.
  • [30] Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D. “Source profiles of volatile organic compounds (VOCs) measured in China: Part I”. Atmospheric Environment, 42(25), 6247–6260, 2008.
  • [31] Hoque RR, Khillare PS, Agarwal T, Shridhar V, Balachandran S. “Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India”. Science of the Total Environment, 392(1), 30–40, 2008.
  • [32] Qin Y, Walk T, Gary R, Yao X, Elles S. “C₂–C₁₀ nonmethane hydrocarbons measured in Dallas, USA—Seasonal trends and diurnal characteristics”. Atmospheric Environment, 41(28), 6018–6032, 2007.
  • [33] Skov H, Hansen AB, Lorenzen G, Andersen HV, Løfstrøm P, Christensen CS. “Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark”. Atmospheric Environment, 35(14), 2463–2471, 2001.
  • [34] Borbon A, Locoge N, Veillerot M, Galloo JC, Guillermo R. “Characterisation of NMHCs in a French urban atmosphere: Overview of the main sources”. Science of the Total Environment, 292(3), 177–191, 2002.
  • [35] Sofuoglu SC, Aslan G, Inal F, Sofuoglu A. “An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools”. International Journal of Hygiene and Environmental Health, 214(1), 36–46, 2011.
  • [36] Yurdakul S, Civan M, Özden Ö, Gaga E, Döğeroğlu T, Tuncel G. “Spatial variation of VOCs and inorganic pollutants in a university building”. Atmospheric Pollution Research, 8(1), 1–12, 2017.
  • [37] Kumari P, Soni D, Aggarwal SG, Singh K. “Seasonal and diurnal measurement of ambient benzene at a high traffic inflation site in Delhi: Health risk assessment and its possible role in ozone formation pathways”. Environmental Analysis, Health and Toxicology, 38, e2023016, 2023.

Levels, sources, and health risks of volatile organic compounds in a university building

Year 2026, Volume: 32 Issue: 3

Abstract

In this study, volatile organic compounds (VOCs) were collected from 21 different selected locations (4 outdoor, 2 classrooms, 3 offices, 4 corridors, and 8 laboratories) in a university building using passive sampling tubes and the concentrations, sources and potential health risks of VOCs in the collected samples were investigated. The study was conducted during two different sampling periods, 27.02-03.03.2017 and 08-12.05.2017, and 52 samples were analyzed. In summer, hexane was the most abundant compound with 64.71%, followed by 2,4-dimethylpentane (12.93%), toluene (4.85%), and cyclohexane (2.42%). Similar to summer, hexane was the most abundant organic compound in winter with 32.74%. Hexane was followed by 2,4-dimethylpentane (19.53%), cyclohexane (8.39%), and benzene (7.35%). In the study, it was observed that the total concentration of VOCs in the summer months was about twice as high as in the winter months. Seasonal factors and variation in sources were found to be effective on pollutant concentrations. Based on the average Indoor/Outdoor (I/O) ratio, laboratories are an important source for indoor areas. As a result of the source identification study, five factors that cause the formation of VOCs were identified. The most important source (explaining 28.4% of the total variance) was found to be solvents used in laboratories. The study also conducted a risk analysis for the groups of people using the building and found that the carcinogenic risks were 12 and 1.2 times higher than the tolerable limit (5.7-6.8×E-06) for the research assistants and graduate students when laboratories were used as integrated offices. These results indicate the necessity of implementing effective ventilation strategies to improve indoor air quality and urgent interventions for the control of VOC sources.

References

  • [1] Brown SK. “Volatile organic pollutants in new and established buildings in Melbourne, Australia”. Indoor Air, 12(1), 55–63, 2002.
  • [2] Godwin C, Batterman S. “Indoor air quality in Michigan schools”. Indoor Air, 17(2), 109–121, 2007.
  • [3] Saraga D, Pateraki S, Papadopoulos A, Vasilakos C, Maggos T. “Studying the indoor air quality in three nonresidential environments of different use: A museum, a printery industry and an office”. Building and Environment, 46(11), 2333–2341, 2011.
  • [4] Liu N, Bu Z, Liu W, Kan H, Zhao Z, Deng F, Zhang Y. “Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis”. Indoor Air, 32(5), 1–15, 2022.
  • [5] Babayiǧit MA, Bakir B, Tekbaş ÖF, Oǧur R, Kiliç A, Ulus S. “Indoor air quality in primary schools in Keçiören, Ankara”. Turkish Journal of Medical Sciences, 44(1), 137–144, 2014.
  • [6] Madureira J. “Indoor air quality in schools and its relationship with children’s respiratory symptoms”. Atmospheric Environment, 118, 145–156, 2015.
  • [7] Mishra N, Bartsch J, Ayoko GA, Salthammer T, Morawska L. “Volatile Organic Compounds: Characteristics, distribution and sources in urban schools”. Atmospheric Environment, 106, 485–491, 2015.
  • [8] Zhang G, Spickett J, Rumchev K, Lee AH, Stick S. “Indoor environmental quality in a ‘low allergen’ school and three standard primary schools in Western Australia”. Indoor Air, 16(1), 74–80, 2006.
  • [9] Verriele M, Schoemaecker C, Hanoune B, Leclerc N, Germain S, Gaudion V, Locoge N. “The MERMAID study: indoor and outdoor average pollutant concentrations in 10 low-energy school buildings in France”. Indoor Air, 26(5), 702–713, 2016.
  • [10] Sofuoglu SC, Aslan G, Inal F, Sofuoglu A. “An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools”. International Journal of Hygiene and Environmental Health, 214(1), 36–46, 2011.
  • [11] Rumchev K, Ourangui R, Bertolatti D, Spickett J. “Indoor air quality in old and new schools”. WIT Transactions on Biomedicine and Health, 5, 25–32, 2007.
  • [12] Onat B, Yaşar G, Uzun B, Ayvaz C, Alver Şahin Ü. “Indoor environmental quality in the university laboratories”. Pamukkale University Journal of Engineering Sciences, 29(6), 642–649, 2023.
  • [13] Kang J, Liu J, Pei J. “The indoor volatile organic compound (VOC) characteristics and source identification in a new university campus in Tianjin, China”. Journal of the Air and Waste Management Association, 67(6), 725–737, 2017.
  • [14] Allou L, Marchand C, Mirabel P, Le Calvé S. “Aldehydes and BTEX measurements and exposures in university libraries in Strasbourg (France)”. Indoor and Built Environment, 17(2), 138–145, 2008.
  • [15] Kolarik J, Toftum J, Kabrhel M, Jordan F, Geiss O, Kabele K. “Field measurements of perceived air quality and concentration of volatile organic compounds in four offices of the university building”. Indoor and Built Environment, 24(8), 1048–1058, 2015.
  • [16] Solomon SJ, Schade GW, Kuttippurath J, Ladstätter-Weissenmayer A, Burrows JP. “VOC concentrations in an indoor workplace environment of a university building”. Indoor and Built Environment, 17(3), 260–268, 2008.
  • [17] Akal D, Yurdakul S, Civan MY, Tuncel G, Ersan HY. “Sources of Volatile Organic Compounds in a University Building”. Environmental Forensics, 16(2), 173–185, 2015.
  • [18] Goodman NB, Wheeler AJ, Paevere PJ, Selleck PW, Cheng M, Steinemann A. “Indoor volatile organic compounds at an Australian university”. Building and Environment, 135, 344–351, 2018.
  • [19] Ho SSH, Ip HSS, Ho KF, Ng LPT, Dai WT, Cao J, Ho LB. “Evaluation of hazardous airborne carbonyls on a university campus in southern China”. Journal of the Air and Waste Management Association, 64(8), 903–916, 2014.
  • [20] Yurdakul S, Civan M, Kuntasal ÖO, Tuncel G. “Temporal variations of BTX compounds in Bursa/Turkey atmosphere”. International Journal of Global Warming, 5(3), 326–344, 2013.
  • [21] Yılmaz Civan M, Yurdakul S, Tuncel G. “Improvement of uptake rate equations depending on meteorological conditions for 25 volatile organic compounds”. Talanta, 99, 720–729, 2012.
  • [22] Guo H, Wang T, Louie PKK. “Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model”. Environmental Pollution, 129(3), 489–498, 2004.
  • [23] Abdul-Wahab SA, Bakheit CS, Al-Alawi SM. “Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations”. Environmental Modelling and Software, 20(10), 1263–1271, 2005.
  • [24] Guo H, Lee SC, Louie PKK, Ho KF. “Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong”. Chemosphere, 57(10), 1363–1372, 2004.
  • [25] Martínez De Yuso A, Izquierdo MT, Valenciano R, Rubio B. “Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes”. Fuel Processing Technology, 110, 1–7, 2013.
  • [26] Xiong J, Wei W, Huang S, Zhang Y. “Association between the emission rate and temperature for chemical pollutants in building materials: General correlation and understanding”. Environmental Science and Technology, 47(15), 8540–8547, 2013.
  • [27] Liu C, Huang X, Li J. “Outdoor benzene highly impacts indoor concentrations globally”. Science of the Total Environment, 720, 137640, 2020.
  • [28] Katiyar V, Khare M. “Horizontal Measurements of SO₂, NO₂ and SPM in Indoor Air and relationship to Outdoor concentration”. Office, (2), 2007.
  • [29] Zabiegała B. “Organic compounds in indoor environments”. Polish Journal of Environmental Studies, 15(3), 383–393, 2006.
  • [30] Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D. “Source profiles of volatile organic compounds (VOCs) measured in China: Part I”. Atmospheric Environment, 42(25), 6247–6260, 2008.
  • [31] Hoque RR, Khillare PS, Agarwal T, Shridhar V, Balachandran S. “Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India”. Science of the Total Environment, 392(1), 30–40, 2008.
  • [32] Qin Y, Walk T, Gary R, Yao X, Elles S. “C₂–C₁₀ nonmethane hydrocarbons measured in Dallas, USA—Seasonal trends and diurnal characteristics”. Atmospheric Environment, 41(28), 6018–6032, 2007.
  • [33] Skov H, Hansen AB, Lorenzen G, Andersen HV, Løfstrøm P, Christensen CS. “Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark”. Atmospheric Environment, 35(14), 2463–2471, 2001.
  • [34] Borbon A, Locoge N, Veillerot M, Galloo JC, Guillermo R. “Characterisation of NMHCs in a French urban atmosphere: Overview of the main sources”. Science of the Total Environment, 292(3), 177–191, 2002.
  • [35] Sofuoglu SC, Aslan G, Inal F, Sofuoglu A. “An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools”. International Journal of Hygiene and Environmental Health, 214(1), 36–46, 2011.
  • [36] Yurdakul S, Civan M, Özden Ö, Gaga E, Döğeroğlu T, Tuncel G. “Spatial variation of VOCs and inorganic pollutants in a university building”. Atmospheric Pollution Research, 8(1), 1–12, 2017.
  • [37] Kumari P, Soni D, Aggarwal SG, Singh K. “Seasonal and diurnal measurement of ambient benzene at a high traffic inflation site in Delhi: Health risk assessment and its possible role in ozone formation pathways”. Environmental Analysis, Health and Toxicology, 38, e2023016, 2023.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Health and Ecological Risk Assessment
Journal Section Research Article
Authors

Cevdet Doğan

Sema Yurdakul

Sena Erkent

Banu Çetin

Early Pub Date November 2, 2025
Publication Date November 19, 2025
Submission Date February 12, 2025
Acceptance Date August 14, 2025
Published in Issue Year 2026 Volume: 32 Issue: 3

Cite

APA Doğan, C., Yurdakul, S., Erkent, S., Çetin, B. (2025). Bir üniversite binasındaki uçucu organik bileşiklerin düzeyleri, kaynakları ve sağlık riskleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(3). https://doi.org/10.5505/pajes.2025.70034
AMA Doğan C, Yurdakul S, Erkent S, Çetin B. Bir üniversite binasındaki uçucu organik bileşiklerin düzeyleri, kaynakları ve sağlık riskleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(3). doi:10.5505/pajes.2025.70034
Chicago Doğan, Cevdet, Sema Yurdakul, Sena Erkent, and Banu Çetin. “Bir üniversite Binasındaki Uçucu Organik Bileşiklerin Düzeyleri, Kaynakları Ve Sağlık Riskleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 3 (November 2025). https://doi.org/10.5505/pajes.2025.70034.
EndNote Doğan C, Yurdakul S, Erkent S, Çetin B (November 1, 2025) Bir üniversite binasındaki uçucu organik bileşiklerin düzeyleri, kaynakları ve sağlık riskleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 3
IEEE C. Doğan, S. Yurdakul, S. Erkent, and B. Çetin, “Bir üniversite binasındaki uçucu organik bileşiklerin düzeyleri, kaynakları ve sağlık riskleri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi: 10.5505/pajes.2025.70034.
ISNAD Doğan, Cevdet et al. “Bir üniversite Binasındaki Uçucu Organik Bileşiklerin Düzeyleri, Kaynakları Ve Sağlık Riskleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/3 (November2025). https://doi.org/10.5505/pajes.2025.70034.
JAMA Doğan C, Yurdakul S, Erkent S, Çetin B. Bir üniversite binasındaki uçucu organik bileşiklerin düzeyleri, kaynakları ve sağlık riskleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.70034.
MLA Doğan, Cevdet et al. “Bir üniversite Binasındaki Uçucu Organik Bileşiklerin Düzeyleri, Kaynakları Ve Sağlık Riskleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi:10.5505/pajes.2025.70034.
Vancouver Doğan C, Yurdakul S, Erkent S, Çetin B. Bir üniversite binasındaki uçucu organik bileşiklerin düzeyleri, kaynakları ve sağlık riskleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(3).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif