Research Article
BibTex RIS Cite

Reliability based particle swarm optimization for obtaining optimal dimensions of boom crane lifting mechanism

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.27860

Abstract

Articulated Mobile Cranes are specially designed systems intended for lifting and transporting loads of varying weights and dimensions. The physical dimensions of these systems may vary depending on their field of application and specific technical requirements. Such variations can have significant impacts on both lifting capacity and operational speed. Dimensional changes may lead to undesirable deviations within the safety limits established during the design phase. Therefore, in order to optimize the dimensions of these mechanisms, the statistical nature of manufacturing and measurement errors must be carefully assessed. In this study, the dimensional optimization of crane boom lifting mechanisms was performed based on reliability analysis by combining Monte Carlo Simulation with the Particle Swarm Optimization method to determine the optimal mechanism dimensions. According to the results obtained, it was found that the lambda values for different operating modes are primarily influenced by the geometric parameter (ψ) and, to a lesser extent, by the cylinder speed (vc). Depending on the selected parameters, the lambda value was observed to vary between 0.35 and 0.55.

References

  • [1] Kennedy, J., Eberhart, R. “Particle swarm optimization”. Proceedings IEEE International Conference Neural Networks, IEEE, Perth, WA, Australia, 27 November–1 December 1995.
  • [2] Naka, S., Genji, T., Yura, T., Fukuyama, Y. “A hybrid particle swarm optimization for distribution state estimation”. IEEE Transactions on Power Systems, 18, 60–68, 2003.
  • [3] Ratnaweera, A., Halgamuge, S.K. “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient”. IEEE Transactions on Evolutionary Computation, 8, 240–255, 2004.
  • [4] Shi, Y., Eberhart, R.C. “A modified particle swarm optimizer”. Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, 4–9 May 1998.
  • [5] Clerc, M. “The Swarm and the Queen: Towards the deterministic and adaptive particle swarm optimization”. Proceedings of the Congress on Evolutionary Computation, IEEE Service Center, Washington, DC, USA, 6–9 July 1999.
  • [6] Arumugam, M.S., Rao, M.V.R., Tan, A.W.C. “A novel and effective particle swarm optimization-like algorithm with extrapolation technique”. Applied Soft Computing, 9, 308–320, 2009.
  • [7] Fateh, M.M., Zirkohi, M.M. “Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation”. Vehicle System Dynamics, 49(12), 1951–1965, 2011.
  • [8] Lu, H., Dong, Y. “A reliability index computation method based on particle swarm optimization”. International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE-2015).
  • [9] Elegbede, C. “Structural reliability assessment based on particle swarm optimization”. Structural Safety, 27, 171–186, 2005.
  • [10] Wu, P., Gao, L., Zou, D., Li, S. “An improved particle swarm optimization algorithm for reliability problems”. ISA Transactions, 50, 71–81, 2011.
  • [11] Chengming, L., Hui, L. “Structural reliability and sensitivity analysis of random variables based on PSO”. Journal of Xi'an University of Architecture & Technology, 38, 614–618, 2006.
  • [12] Kuo, W., Prasad, V.R. “An annotated overview of system-reliability optimization”. IEEE Transactions on Reliability, 49, 176–187, 2000.
  • [13] Gaby, G., Prayogo, D., Wijaya, B.H., Wong, F.T., Tjandra, D. “Reliability-based design optimization for structures using particle swarm optimization”. Journal of Physics: Conference Series, 1625, 012016, 2020.
  • [14] Prayogo, D., Cheng, M.Y., Wong, F.T., Tjandra, D., Tran, D.H. “Optimization model for construction project resource leveling using a novel modified symbiotic organisms search”. Asian Journal of Civil Engineering, 19, 625–638, 2018.
  • [15] Coelho, L.S. “An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications”. Reliability Engineering and System Safety, 94(4), 830–837, 2009.
  • [16] Liu, Z., Zhu, C., Zhu, P., Chen, W. “Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm”. Composite Structures, 204, 239–255, 2018.
  • [17] Liu, Y., Qin, G. “A modified particle swarm optimization algorithm for reliability redundancy optimization problem”. Journal of Computers, 9(9), September 2014.
  • [18] Malhotra, R., Negi, A. “Reliability modeling using particle swarm optimization”. International Journal of System Assurance Engineering and Management, 4, 275–283, 2013.
  • [19] Sun, G., Zhang, H., Fang, J., Li, G., Li, Q. “A new multi-objective discrete robust optimization algorithm for engineering design”. Applied Mathematical Modelling, 53, 602–621, 2018.
  • [20] Xu, X., Chen, X., Liu, Z., Yang, J., Xu, Y., Zhang, Y., Gao, Y. “Multi-objective reliability-based design optimization for the reducer housing of electric vehicles”. Engineering Optimization, 1–17, 2021.
  • [21] Xu, X., Chen, X., Liu, Z., Xu, Y., Zhang, Y. “Reliability-based design for lightweight vehicle structures with uncertain manufacturing accuracy”. Applied Mathematical Modelling, 95, 22–37, 2021.
  • [22] Fang, J., Gao, Y., Sun, G., Xu, C., Li, Q. “Multiobjective robust design optimization of fatigue life for a truck cab”. Reliability Engineering & System Safety, 135, 1–8, 2015.
  • [23] Dawood, T., Elwakil, E., Novoa, H.M., Delgado, J.F.G. “Soft computing for modeling pipeline risk index under uncertainty”. Engineering Failure Analysis, 117, 104949, 2020.
  • [24] Li, W., Gao, L., Xiao, M. “Multidisciplinary robust design optimization under parameter and model uncertainties”. Engineering Optimization, 52, 426–445, 2020.
  • [25] Chen, Z., Li, T., Xue, X., Zhou, Y., Jing, S. “Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method”. Engineering Failure Analysis, 127, 105357, 2021.
  • [26] Yuan, R., Tang, M., Wang, H., Li, H. “A reliability analysis method of accelerated performance degradation based on Bayesian strategy”. IEEE Access, 7, 169047–169054, 2019.
  • [27] Xian, J., Su, C. “Stochastic optimization of uncertain viscous dampers for energy-dissipation structures under random seismic excitations”. Mechanical Systems and Signal Processing, 164, 108208, 2022.
  • [28] Tan, Y., Zhan, C., Pi, Y., Zhang, C., Song, J., Chen, Y., Golmohammadi, A.M. “A hybrid algorithm based on social engineering and artificial neural network for fault warning detection in hydraulic turbines”. Mathematics, 11, 2274, 2023.
  • [29] Xue, Y., Deng, Y. “Extending set measures to orthopair fuzzy sets”. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 30, 63–91, 2022.
  • [30] Zhu, S.P., Keshtegar, B., Bagheri, M., Hao, P., Trung, N.T. “Novel hybrid robust method for uncertain reliability analysis using finite conjugate map”. Computer Methods in Applied Mechanics and Engineering, 371, 113309, 2020.
  • [31] Bagheri, M., Zhu, S.P., Ben Seghier, M.E.A., Keshtegar, B., Trung, N.T. “Hybrid intelligent method for fuzzy reliability analysis of corroded X100 steel pipelines”. Engineering Computations, 37, 2559–2573, 2021.
  • [32] Plotnikov, L. “Preparation and analysis of experimental findings on the thermal and mechanical characteristics of pulsating gas flows in the intake system of a piston engine for modelling and machine learning”. Mathematics, 11, 1967, 2023.
  • [33] Zhang, D., Zhang, J., Yang, M., Wang, R., Wu, Z. “An enhanced finite step length method for structural reliability analysis and reliability-based design optimization”. Structural and Multidisciplinary Optimization, 65, 231, 2022.
  • [34] Dui, H., Song, J., Zhang, Y.A. “Reliability and service life analysis of airbag systems”. Mathematics, 11, 434, 2023.

Vinç bom kaldırma mekanizmasının optimum boyutlarını elde etmek için güvenilirlik tabanlı parçacık sürü optimizasyonu

Year 2026, Volume: 32 Issue: 3
https://doi.org/10.5505/pajes.2025.27860

Abstract

Araç üstü mobil vinçler, farklı ağırlık ve boyutlardaki yükleri kaldırmak ve taşımak amacıyla özel olarak tasarlanmış sistemlerdir. Bu sistemlerin fiziksel boyutları, kullanım alanlarına ve farklı teknik isteklere bağlı olarak değişkenlik gösterebilir. Bu durum hem kaldırma kapasitesi üzerinde hem de hareket hızı üzerinde önemli etkiler yaratabilir. Boyutsal değişimler, tasarım aşamasında belirlenmiş güvenlik sınırları içerisinde istenmeyen sapmalara neden olabilir. Bu yüzden, bu mekanizmaların boyutlarını optimize etmek için üretim ve ölçüm hatalarının istatistiksel doğasının dikkatli biçimde değerlendirilmesi gerekir. Bu çalışmada, vinç bom kaldırma mekanizmalarının boyutsal optimizasyonu amacıyla Monte Carlo simülasyonu ile Parçacık Sürü Optimizasyonu yöntemi birlikte kullanılarak, mekanizmanın optimum boyutları güvenilirlik temelli olarak belirlenmiştir. Elde edilen sonuçlara gore, farklı çalışma modları için lambda değerlerinin, öncelikle geometri parametresinden (ψ) ve daha az ölçüde silindir hızından (vc) etkilendiği ve seçilen parametrelere gore lambda değerinin 0,35-0,55 arasında değiştiği tespit edilmiştir.

References

  • [1] Kennedy, J., Eberhart, R. “Particle swarm optimization”. Proceedings IEEE International Conference Neural Networks, IEEE, Perth, WA, Australia, 27 November–1 December 1995.
  • [2] Naka, S., Genji, T., Yura, T., Fukuyama, Y. “A hybrid particle swarm optimization for distribution state estimation”. IEEE Transactions on Power Systems, 18, 60–68, 2003.
  • [3] Ratnaweera, A., Halgamuge, S.K. “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient”. IEEE Transactions on Evolutionary Computation, 8, 240–255, 2004.
  • [4] Shi, Y., Eberhart, R.C. “A modified particle swarm optimizer”. Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, 4–9 May 1998.
  • [5] Clerc, M. “The Swarm and the Queen: Towards the deterministic and adaptive particle swarm optimization”. Proceedings of the Congress on Evolutionary Computation, IEEE Service Center, Washington, DC, USA, 6–9 July 1999.
  • [6] Arumugam, M.S., Rao, M.V.R., Tan, A.W.C. “A novel and effective particle swarm optimization-like algorithm with extrapolation technique”. Applied Soft Computing, 9, 308–320, 2009.
  • [7] Fateh, M.M., Zirkohi, M.M. “Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation”. Vehicle System Dynamics, 49(12), 1951–1965, 2011.
  • [8] Lu, H., Dong, Y. “A reliability index computation method based on particle swarm optimization”. International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE-2015).
  • [9] Elegbede, C. “Structural reliability assessment based on particle swarm optimization”. Structural Safety, 27, 171–186, 2005.
  • [10] Wu, P., Gao, L., Zou, D., Li, S. “An improved particle swarm optimization algorithm for reliability problems”. ISA Transactions, 50, 71–81, 2011.
  • [11] Chengming, L., Hui, L. “Structural reliability and sensitivity analysis of random variables based on PSO”. Journal of Xi'an University of Architecture & Technology, 38, 614–618, 2006.
  • [12] Kuo, W., Prasad, V.R. “An annotated overview of system-reliability optimization”. IEEE Transactions on Reliability, 49, 176–187, 2000.
  • [13] Gaby, G., Prayogo, D., Wijaya, B.H., Wong, F.T., Tjandra, D. “Reliability-based design optimization for structures using particle swarm optimization”. Journal of Physics: Conference Series, 1625, 012016, 2020.
  • [14] Prayogo, D., Cheng, M.Y., Wong, F.T., Tjandra, D., Tran, D.H. “Optimization model for construction project resource leveling using a novel modified symbiotic organisms search”. Asian Journal of Civil Engineering, 19, 625–638, 2018.
  • [15] Coelho, L.S. “An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications”. Reliability Engineering and System Safety, 94(4), 830–837, 2009.
  • [16] Liu, Z., Zhu, C., Zhu, P., Chen, W. “Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm”. Composite Structures, 204, 239–255, 2018.
  • [17] Liu, Y., Qin, G. “A modified particle swarm optimization algorithm for reliability redundancy optimization problem”. Journal of Computers, 9(9), September 2014.
  • [18] Malhotra, R., Negi, A. “Reliability modeling using particle swarm optimization”. International Journal of System Assurance Engineering and Management, 4, 275–283, 2013.
  • [19] Sun, G., Zhang, H., Fang, J., Li, G., Li, Q. “A new multi-objective discrete robust optimization algorithm for engineering design”. Applied Mathematical Modelling, 53, 602–621, 2018.
  • [20] Xu, X., Chen, X., Liu, Z., Yang, J., Xu, Y., Zhang, Y., Gao, Y. “Multi-objective reliability-based design optimization for the reducer housing of electric vehicles”. Engineering Optimization, 1–17, 2021.
  • [21] Xu, X., Chen, X., Liu, Z., Xu, Y., Zhang, Y. “Reliability-based design for lightweight vehicle structures with uncertain manufacturing accuracy”. Applied Mathematical Modelling, 95, 22–37, 2021.
  • [22] Fang, J., Gao, Y., Sun, G., Xu, C., Li, Q. “Multiobjective robust design optimization of fatigue life for a truck cab”. Reliability Engineering & System Safety, 135, 1–8, 2015.
  • [23] Dawood, T., Elwakil, E., Novoa, H.M., Delgado, J.F.G. “Soft computing for modeling pipeline risk index under uncertainty”. Engineering Failure Analysis, 117, 104949, 2020.
  • [24] Li, W., Gao, L., Xiao, M. “Multidisciplinary robust design optimization under parameter and model uncertainties”. Engineering Optimization, 52, 426–445, 2020.
  • [25] Chen, Z., Li, T., Xue, X., Zhou, Y., Jing, S. “Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method”. Engineering Failure Analysis, 127, 105357, 2021.
  • [26] Yuan, R., Tang, M., Wang, H., Li, H. “A reliability analysis method of accelerated performance degradation based on Bayesian strategy”. IEEE Access, 7, 169047–169054, 2019.
  • [27] Xian, J., Su, C. “Stochastic optimization of uncertain viscous dampers for energy-dissipation structures under random seismic excitations”. Mechanical Systems and Signal Processing, 164, 108208, 2022.
  • [28] Tan, Y., Zhan, C., Pi, Y., Zhang, C., Song, J., Chen, Y., Golmohammadi, A.M. “A hybrid algorithm based on social engineering and artificial neural network for fault warning detection in hydraulic turbines”. Mathematics, 11, 2274, 2023.
  • [29] Xue, Y., Deng, Y. “Extending set measures to orthopair fuzzy sets”. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 30, 63–91, 2022.
  • [30] Zhu, S.P., Keshtegar, B., Bagheri, M., Hao, P., Trung, N.T. “Novel hybrid robust method for uncertain reliability analysis using finite conjugate map”. Computer Methods in Applied Mechanics and Engineering, 371, 113309, 2020.
  • [31] Bagheri, M., Zhu, S.P., Ben Seghier, M.E.A., Keshtegar, B., Trung, N.T. “Hybrid intelligent method for fuzzy reliability analysis of corroded X100 steel pipelines”. Engineering Computations, 37, 2559–2573, 2021.
  • [32] Plotnikov, L. “Preparation and analysis of experimental findings on the thermal and mechanical characteristics of pulsating gas flows in the intake system of a piston engine for modelling and machine learning”. Mathematics, 11, 1967, 2023.
  • [33] Zhang, D., Zhang, J., Yang, M., Wang, R., Wu, Z. “An enhanced finite step length method for structural reliability analysis and reliability-based design optimization”. Structural and Multidisciplinary Optimization, 65, 231, 2022.
  • [34] Dui, H., Song, J., Zhang, Y.A. “Reliability and service life analysis of airbag systems”. Mathematics, 11, 434, 2023.
There are 34 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Ömer Sinan Şahin

Ahmet Çatal This is me

Kerem Çoban

Oğuzhan Taş

Early Pub Date November 2, 2025
Publication Date November 19, 2025
Submission Date April 24, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2026 Volume: 32 Issue: 3

Cite

APA Şahin, Ö. S., Çatal, A., Çoban, K., Taş, O. (2025). Reliability based particle swarm optimization for obtaining optimal dimensions of boom crane lifting mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(3). https://doi.org/10.5505/pajes.2025.27860
AMA Şahin ÖS, Çatal A, Çoban K, Taş O. Reliability based particle swarm optimization for obtaining optimal dimensions of boom crane lifting mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(3). doi:10.5505/pajes.2025.27860
Chicago Şahin, Ömer Sinan, Ahmet Çatal, Kerem Çoban, and Oğuzhan Taş. “Reliability Based Particle Swarm Optimization for Obtaining Optimal Dimensions of Boom Crane Lifting Mechanism”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 3 (November 2025). https://doi.org/10.5505/pajes.2025.27860.
EndNote Şahin ÖS, Çatal A, Çoban K, Taş O (November 1, 2025) Reliability based particle swarm optimization for obtaining optimal dimensions of boom crane lifting mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 3
IEEE Ö. S. Şahin, A. Çatal, K. Çoban, and O. Taş, “Reliability based particle swarm optimization for obtaining optimal dimensions of boom crane lifting mechanism”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi: 10.5505/pajes.2025.27860.
ISNAD Şahin, Ömer Sinan et al. “Reliability Based Particle Swarm Optimization for Obtaining Optimal Dimensions of Boom Crane Lifting Mechanism”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/3 (November2025). https://doi.org/10.5505/pajes.2025.27860.
JAMA Şahin ÖS, Çatal A, Çoban K, Taş O. Reliability based particle swarm optimization for obtaining optimal dimensions of boom crane lifting mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.27860.
MLA Şahin, Ömer Sinan et al. “Reliability Based Particle Swarm Optimization for Obtaining Optimal Dimensions of Boom Crane Lifting Mechanism”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 3, 2025, doi:10.5505/pajes.2025.27860.
Vancouver Şahin ÖS, Çatal A, Çoban K, Taş O. Reliability based particle swarm optimization for obtaining optimal dimensions of boom crane lifting mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(3).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif