Research Article
BibTex RIS Cite
Year 2017, , 11 - 18, 30.12.2017
https://doi.org/10.17261/Pressacademia.2017.738

Abstract

References

  • Borak, S., Härdle, W., & Weron, R. (2005). Stable distributions. In Statistical tools for finance and insurance (pp. 21-44). Springer Berlin Heidelberg.
  • Çekici, E. (2003). İşlem Hacmi Verilerinin Kararlı Paretian Dağılımlarla Modellenmesi, Doktora Tezi, Marmara Üniversitesi, İstanbul.
  • Fama, E. F., & Roll, R. (1968). Some properties of symmetric stable distributions. Journal of the American Statistical Association, 63(323), 817836.
  • Fama, E. F., & Roll, R. (1971). Parameter estimates for symmetric stable distributions. Journal of the American Statistical Association, 66(334), 331-338.
  • Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The annals of statistics, 3(5), 1163-1174.
  • Inskeep, E. (1991). Tourism planning: an integrated and sustainable development approach. Van Nostrand Reinhold.
  • Kuruoglu, E. E. (2001). Density parameter estimation of skewed/spl alpha/-stable distributions. IEEE transactions on signal processing, 49(10), 2192-2201.
  • Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394-419. Retrieved from http://www.jstor.org/stable/2350970.
  • McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters. Communications in Statistics:Simulation and Computation, 15(4), 1109-1136.
  • Nolan, J. P. (1998). Parameterizations and modes of stable distributions. Statistics & probability letters, 38(2), 187-195.
  • Nolan, J. P. (2001). Maximum likelihood estimation and diagnostics for stable distributions. Lévy processes: theory and applications, 379-400.
  • Nolan, J.P. (2016). Stable Distributions: Models for Heavy Tailed Data. http://academic2.american.edu/~jpnolan/stable/chap1.pdf Önalan, Ö. (2010). α− Kararlı Dağılımlarla Finansal Risk Ölçümü, 28(1), 549-571.
  • Uchaikin, V. V., & Zolotarev, V. M. (1999). Chance and stability: stable distributions and their applications. Walter de Gruyter.
  • Yang, Y. (2012). Option Pricing With Non-Gaussian Distribution-Numerical Approach.
  • Zhaozhi Fan. (2006). Parameter Estimation of Stable Distributions, Communications in Statistics - Theory and Methods, 35(2), 245-255 Zolotarev, V. M. (1996). One-dimensional Stable Distributions (Vol. 65). American Mathematical Society, USA.

MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS

Year 2017, , 11 - 18, 30.12.2017
https://doi.org/10.17261/Pressacademia.2017.738

Abstract

Purpose- The contribution of tourism
sector to the national economy is crucial. But the sector has a structure which
is always hold risks and uncertainties. 
For this purpose, the distribution of daily trading volumes of the
tourism companies that are located in the high-risk tourism sector and traded
in BIST will be modelled.

Methodology-
As the distribution of BIST Tourism trading volume data does not suitable
for normal distribution, it is modeled by analyzing with stable distributions.

Findings-
The parameters of stable distribution are estimated according to the quantiles
method which one of the most used estimation methods.







Conclusion-
Estimated parameter values show that the stable distributions can be used as an
appropriate model for daily trading volume of BIST tourism index. 

References

  • Borak, S., Härdle, W., & Weron, R. (2005). Stable distributions. In Statistical tools for finance and insurance (pp. 21-44). Springer Berlin Heidelberg.
  • Çekici, E. (2003). İşlem Hacmi Verilerinin Kararlı Paretian Dağılımlarla Modellenmesi, Doktora Tezi, Marmara Üniversitesi, İstanbul.
  • Fama, E. F., & Roll, R. (1968). Some properties of symmetric stable distributions. Journal of the American Statistical Association, 63(323), 817836.
  • Fama, E. F., & Roll, R. (1971). Parameter estimates for symmetric stable distributions. Journal of the American Statistical Association, 66(334), 331-338.
  • Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The annals of statistics, 3(5), 1163-1174.
  • Inskeep, E. (1991). Tourism planning: an integrated and sustainable development approach. Van Nostrand Reinhold.
  • Kuruoglu, E. E. (2001). Density parameter estimation of skewed/spl alpha/-stable distributions. IEEE transactions on signal processing, 49(10), 2192-2201.
  • Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394-419. Retrieved from http://www.jstor.org/stable/2350970.
  • McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters. Communications in Statistics:Simulation and Computation, 15(4), 1109-1136.
  • Nolan, J. P. (1998). Parameterizations and modes of stable distributions. Statistics & probability letters, 38(2), 187-195.
  • Nolan, J. P. (2001). Maximum likelihood estimation and diagnostics for stable distributions. Lévy processes: theory and applications, 379-400.
  • Nolan, J.P. (2016). Stable Distributions: Models for Heavy Tailed Data. http://academic2.american.edu/~jpnolan/stable/chap1.pdf Önalan, Ö. (2010). α− Kararlı Dağılımlarla Finansal Risk Ölçümü, 28(1), 549-571.
  • Uchaikin, V. V., & Zolotarev, V. M. (1999). Chance and stability: stable distributions and their applications. Walter de Gruyter.
  • Yang, Y. (2012). Option Pricing With Non-Gaussian Distribution-Numerical Approach.
  • Zhaozhi Fan. (2006). Parameter Estimation of Stable Distributions, Communications in Statistics - Theory and Methods, 35(2), 245-255 Zolotarev, V. M. (1996). One-dimensional Stable Distributions (Vol. 65). American Mathematical Society, USA.
There are 15 citations in total.

Details

Journal Section Articles
Authors

Hulya Basegmez This is me

Elif Cekici

Publication Date December 30, 2017
Published in Issue Year 2017

Cite

APA Basegmez, H., & Cekici, E. (2017). MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS. PressAcademia Procedia, 6(1), 11-18. https://doi.org/10.17261/Pressacademia.2017.738
AMA Basegmez H, Cekici E. MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS. PAP. December 2017;6(1):11-18. doi:10.17261/Pressacademia.2017.738
Chicago Basegmez, Hulya, and Elif Cekici. “MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS”. PressAcademia Procedia 6, no. 1 (December 2017): 11-18. https://doi.org/10.17261/Pressacademia.2017.738.
EndNote Basegmez H, Cekici E (December 1, 2017) MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS. PressAcademia Procedia 6 1 11–18.
IEEE H. Basegmez and E. Cekici, “MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS”, PAP, vol. 6, no. 1, pp. 11–18, 2017, doi: 10.17261/Pressacademia.2017.738.
ISNAD Basegmez, Hulya - Cekici, Elif. “MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS”. PressAcademia Procedia 6/1 (December 2017), 11-18. https://doi.org/10.17261/Pressacademia.2017.738.
JAMA Basegmez H, Cekici E. MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS. PAP. 2017;6:11–18.
MLA Basegmez, Hulya and Elif Cekici. “MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS”. PressAcademia Procedia, vol. 6, no. 1, 2017, pp. 11-18, doi:10.17261/Pressacademia.2017.738.
Vancouver Basegmez H, Cekici E. MODELLING OF BIST TOURISM INDEX’S TRADING VOLUME WITH STABLE PARETIAN DISTRIBUTIONS. PAP. 2017;6(1):11-8.

PressAcademia Procedia (PAP) publishes proceedings of conferences, seminars and symposiums. PressAcademia Procedia aims to provide a source for academic researchers, practitioners and policy makers in the area of social and behavioral sciences, and engineering.

PressAcademia Procedia invites academic conferences for publishing their proceedings with a review of editorial board. Since PressAcademia Procedia is an double blind peer-reviewed open-access book, the manuscripts presented in the conferences can easily be reached by numerous researchers. Hence, PressAcademia Procedia increases the value of your conference for your participants. 

PressAcademia Procedia provides an ISBN for each Conference Proceeding Book and a DOI number for each manuscript published in this book.

PressAcademia Procedia is currently indexed by DRJI, J-Gate, International Scientific Indexing, ISRA, Root Indexing, SOBIAD, Scope, EuroPub, Journal Factor Indexing and InfoBase Indexing. 

Please contact to procedia@pressacademia.org for your conference proceedings.