Amaç- Bu çalışmanın amacı Euro/Türk lirası kurunun hareketinin istatistik ve yapay sinir ağları yöntemleri ile tahmin edilmesidir.
Yöntem- Çalışmada iki farklı tahmin yöntemi ile Euro/Türk lirası kuru tahmini yapılmıştır. Girdi olarak her iki modelde de son 10 yılın Euro/Türk lirası günlük kuru kullanılmış ve son 1 yılın günlük dolar kuru tahmin edilmiştir.
Bulgular- Yapay sinir ağları yöntemi ile bulunan ortalama mutlak hatalar istatistik yöntemi ile bulunanların yaklaşık %2’si kadar daha azdır. Tahminler 365 günün her biri için “rolling window” yöntemi kullanılarak yapıldığından, elde edilen sonuçların “robust” olduğu söylenebilir.
Sonuç- Araştırmada kullanılan her iki modelin de belirli bir başarı ile Dolar kurunu tahmin tahmin edebildikleri ancak Yapay Sinir Ağları modelinin, istatistik modeline kıyasla daha başarılı sonuçlar verdiği gözlemlenmiştir. Bundan sonraki çalışmalarda dışsal değişkenlerin de modele eklenmesi ile tahmin performansının arttırılabilmesi mümkün olabilir.
Purpose- The aim of this study is to estimate the movement of the Euro/Turkish lira currency with a statistical method and artificial neural networks methods and to compare the performance of these two methods.
Methodology- In the study, two different forecasting methods were used to estimate the dollar exchange rate. In both models, the Euro/Turkish lira daily rate for the last 10 years was used and the daily dollar rate for the last 1 year was estimated.
Findings- The mean absolute errors found by artificial neural networks method are about 2% less than those found by the statistical method. Since estimates are made using the "rolling window" method for each of the 365 days, it can be said that the results obtained are "robust".
Conclusion- It has been observed that the Artificial Neural Networks model yields more successful results than the statistical model, although both models used in the research can forecast the dollar exchange rate with a certain success. In future studies it may be possible to increase the estimation performance by adding the exogenous variables to the model.
Primary Language | Turkish |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | September 1, 2018 |
Published in Issue | Year 2018 |
PressAcademia Procedia (PAP) publishes proceedings of conferences, seminars and symposiums. PressAcademia Procedia aims to provide a source for academic researchers, practitioners and policy makers in the area of social and behavioral sciences, and engineering.
PressAcademia Procedia invites academic conferences for publishing their proceedings with a review of editorial board. Since PressAcademia Procedia is an double blind peer-reviewed open-access book, the manuscripts presented in the conferences can easily be reached by numerous researchers. Hence, PressAcademia Procedia increases the value of your conference for your participants.
PressAcademia Procedia provides an ISBN for each Conference Proceeding Book and a DOI number for each manuscript published in this book.
PressAcademia Procedia is currently indexed by DRJI, J-Gate, International Scientific Indexing, ISRA, Root Indexing, SOBIAD, Scope, EuroPub, Journal Factor Indexing and InfoBase Indexing.
Please contact to procedia@pressacademia.org for your conference proceedings.