Research Article
BibTex RIS Cite

Artificial Intelligence Myths: Prevalence Among Turkish University Students and Comparative Analysis of ChatGPT Responses

Year 2025, Volume: 12 Issue: 3, 292 - 311, 01.05.2025
https://doi.org/10.17275/per.25.45.12.3

Abstract

Artificial intelligence (AI) has rapidly emerged as a transformative technology across various disciplines. However, its widespread adoption is accompanied by numerous myths, which are fueled by limited public understanding and can significantly shape how individuals perceive and interact with AI, often leading to negative consequences such as misunderstanding, fear, or resistance. Despite the importance of addressing these myths, research on the prevalence of such beliefs remains insufficient, particularly in the Turkish context. This study aims to determine the prevalence of AI myths among Turkish university students, investigate the factors influencing the adoption of these myths, and compare student perceptions with ChatGPT's responses to the same myths. The study analyzed survey data from 288 students (102 males, 35.4%, and 186 females, 64.6%) using an AI-myth survey consisting of 18 items. Both descriptive and inferential analyses were conducted to determine the prevalence of AI myths and investigate how factors such as academic background, gender, AI-related training, and media consumption influence the adoption of these myths. A comparative analysis was also performed between student responses and ChatGPT’s reactions to these myths. Analysis showed that certain AI myths are particularly prevalent among students. Students from technical disciplines demonstrated a greater ability to identify these myths, while prior AI training and media consumption had minimal impact. ChatGPT’s responses highlighted areas where better communication about AI is needed. The findings suggest that improving AI literacy and dispelling myths are essential for preparing students for more informed engagement with AI technologies.

References

  • Aravind, M. (2025). Debunking myths about Enhanced Recovery After Surgery (ERAS) using Generative Artificial Intelligence. Clinical Nutrition ESPEN, 65, 530-531. https://doi.org/10.1016/j.clnesp.2024.10.104
  • Atkinson, R. D. (2016). 'It's going to kill us!' and other myths about the future of artificial intelligence. Information Technology & Innovation Foundation. https://ssrn.com/abstract=3066182
  • Berliner, D. C., & Glass, G. V. (Eds.). (2014). 50 myths and lies that threaten America's public schools: The real crisis in education. Teachers College Press.
  • Bewersdorff, A., Zhai, X., Roberts, J., & Nerdel, C. (2023). Myths, mis-and preconceptions of artificial intelligence: A review of the literature. Computers and Education: Artificial Intelligence, 4, 100143. https://doi.org/10.1016/j.caeai.2023.100143
  • Bragazzi, N. L., & Garbarino, S. (2024). Assessing the accuracy of generative conversational artificial intelligence in debunking sleep health myths: Mixed methods comparative study with expert analysis. JMIR Formative Research, 8(1), e55762. https://formative.jmir.org/2024/1/e55762
  • Cave, S., Coughlan, K., & Dihal, K. (2019). "Scary robots": Examining public responses to AI. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 331-337). https://doi.org/10.1145/3306618.3314232
  • Chi, M. T. H. (2009). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61-82). Routledge.
  • Chowdhary, K.R. (2020). Introducing artificial intelligence. In Fundamentals of artificial intelligence. Springer. https://doi.org/10.1007/978-81-322-3972-7_1
  • Cook, J., Ecker, U., & Lewandowsky, S. (2015). Misinformation and how to correct it. In R.A. Scott & S.M. Kosslyn (Eds.), Emerging trends in the social and behavioral sciences (pp. 1-17). https://doi.org/10.1002/9781118900772.etrds0222
  • Davis, L. L. (1992). Instrument review: Getting the most from a panel of experts. Applied Nursing Research, 5(4), 194-197. https://doi.org/10.1016/S0897-1897(05)80008-4
  • De Bruyckere, P., Kirschner, P. A., & Hulshof, C. D. (2015). Urban myths about learning and education. Academic Press.
  • Duymaz, Y., & Şahin, Ş. (2023). From ancient mythology to modern technology: The historical evolution of artificial intelligence. European Journal of Therapeutics, 29(4), 964–965. https://doi.org/10.58600/eurjther1895
  • Ecker, U. K. H., Swire, B., & Lewandowsky, S. (2014). Correcting misinformation—A challenge for education and cognitive science. In D. N. Rapp & J. L. G. Braasch (Eds.), Processing inaccurate information: Theoretical and applied perspectives from cognitive science and the educational sciences (pp. 13–37). The MIT Press.
  • Ecker, U. K., Lewandowsky, S., Cook, J., Schmid, P., Fazio, L. K., Brashier, N., ... & Amazeen, M. A. (2022). The psychological drivers of misinformation belief and its resistance to correction. Nature Reviews Psychology, 1(1), 13-29. https://doi.org/10.1038/s44159-021-00006-y
  • Emmert-Streib, F., Yli-Harja, O., & Dehmer, M. (2020). Artificial intelligence: A clarification of misconceptions, myths and desired Status. Frontiers in Artificial Intelligence, 3(524339). https://doi.org/10.3389/frai.2020.524339
  • Galanos, V., Bennett, S., Aylett, R., & Hemment, D. (2023). AI myths debunked: Unpacking six common misconceptions. The New Real Magazine, 1(1), 79–83. https://doi.org/10.2218/newreal.9267
  • Gardner, R. M., & Brown, D. L. (2013). A test of contemporary misconceptions in psychology. Learning and Individual Differences, 24, 211–215. https://doi.org/10.1016/j.lindif.2012.12.008
  • Giuliano, R. (2020). Echoes of myth and magic in the language of artificial intelligence. AI & Society, 35, 1009 - 1024. https://doi.org/10.1007/s00146-020-00966-4
  • Giray, L. (2024). Ten myths about artificial intelligence in education. Higher Learning Research Communications, 14(2), 1–12. https://files.eric.ed.gov/fulltext/EJ1454533.pdf
  • Guerrero, S., Sebastián-Enesco, C., Perez, N., & Enesco, I. (2019). Myths in science: Children trust but do not retain their teacher's information. Journal of Applied Developmental Psychology, 62, 116-121. https://doi.org/10.1016/j.appdev.2019.02.007
  • Heffernan, T. (2020). The dangers of mystifying artificial intelligence and robotics. Toronto Journal of Theology, 36, 93-95. https://doi.org/10.3138/tjt-2020-0029
  • Hirsch-Kreinsen, H., & Krokowski, T. (2024). Promises and myths of artificial intelligence. Weizenbaum Journal of the Digital Society, 4(1). https://doi.org/10.34669/WI.WJDS/4.1.6
  • JASP Team (2024). JASP (Version 0.18.3) [Computer software]. https://jasp-stats.org/download/
  • Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., & Papin, K. (2023). Generative AI and teachers’ perspectives on its implementation in education. Journal of Interactive Learning Research, 34(2), 313-338. https://www.learntechlib.org/primary/p/222363/
  • Larson, E. J. (2021). The myth of artificial intelligence: Why computers can't think the way we do. Harvard University Press. https://doi.org/10.4159/9780674259935
  • Leufer, D. (2020). Why we need to bust some myths about AI. Patterns, 1(7). https://doi.org/10.1016/j.patter.2020.100124
  • Leufer, D., Steinbrück, A., & Liptakova, Z. (2020). AI myths. https://www.aimyths.org/
  • Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N., & Cook, J. (2012). Misinformation and its correction: Continued influence and successful debiasing. Psychological Science in the Public Interest, 13(3), 106-131. https://doi.org/10.1177/1529100612451018
  • Lewandowsky, S., Cook, J., Ecker, U. K. H., Albarracín, D., Amazeen, M. A., Kendeou, P., Lombardi, D.,Newman, E. J., Pennycook, G., Porter, E. Rand, D. G., Rapp, D. N., Reifler, J., Roozenbeek, J., Schmid, P.,Seifert, C. M., Sinatra, G. M., Swire-Thompson, B., van der Linden, S., Vraga, E. K., Wood, T. J., & Zaragoza,M. S. (2020). The debunking handbook 2020. https://digitalcommons.unl.edu/scholcom/245/
  • Lilienfeld, S. O., Lynn, S. J., Ruscio, J., & Beyerstein, B. L. (2010). 50 great myths of popular psychology: Shattering widespread misconceptions about human behavior. Wiley Blackwell.
  • Loomba, S., De Figueiredo, A., Piatek, S. J., De Graaf, K., & Larson, H. J. (2021). Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nature Human Behaviour, 5(3), 337-348. https://doi.org/10.1038/s41562-021-01056-1
  • Natale, S., & Ballatore, A. (2020). Imagining the thinking machine: Technological myths and the rise of artificial intelligence. Convergence: The International Journal of Research into New Media Technologies, 26(1), 3-18. https://doi.org/10.1177/1354856517715164
  • Omisakin, O. A., Ulrich-Schad, J. D., Hunt, A., Givens, J. E., & Beacham, M. (2023). Belief in vaccine myths and vaccine uptake in Utah during the COVID-19 pandemic. Preventive Medicine Reports, 36, 102390. https://doi.org/10.1016/j.pmedr.2023.102390
  • Organisation for Economic Co-operation and Development (OECD) (2002). Understanding the brain towards a new learning science. OECD Publishing, Paris. https://doi.org/10.1787/9789264174986-en.
  • O’Regan, G. (2016). History of artificial intelligence. In Introduction to the history of computing. Springer. https://link.springer.com/chapter/10.1007/978-3-319-33138-6_19
  • Pasquinelli, E. (2012). Neuromyths: Why do they exist and persist? Mind, Brain, and Education, 6(2), 89–96. https://doi.org/10.1111/j.1751-228X.2012.01141.x
  • Pesapane, F., Tantrige, P., Patella, F., Biondetti, P., Nicosia, L., Ianniello, A., Rossi, U., Carrafiello, G., & Ierardi, A. (2020). Myths and facts about artificial intelligence: Why machine- and deep-learning will not replace interventional radiologists. Medical Oncology, 37, 1-9. https://doi.org/10.1007/s12032-020-01368-8
  • Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Research in Nursing & Health, 30(4), 459-467. https://doi.org/10.1002/nur.20199
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207
  • Rogers, J., & Cheung, A. (2020). Pre-service teacher education may perpetuate myths about teaching and learning. Journal of Education for Teaching, 46(3), 417-420. https://doi.org/10.1080/02607476.2020.1766835
  • The Council of Higher Education (HEC). (2024). Yapay zeka, dijitalleşme ve büyük veri alanlarında yeni programlar [New programs in the fields of artificial intelligence, digitalization, and big data]. https://www.yok.gov.tr/Sayfalar/Haberler/2024/yapay-zeka-dijitallesme-buyuk-veri-yeni-programlar.aspx
  • Torrijos-Muelas, M., González-Víllora, S. ve Bodoque-Osma, A. R. (2021). The persistence of neuromyths in the educational settings: A systematic review. Frontiers in Psychology, 11, 591923. https://doi.org/10.3389/fpsyg.2020.591923
  • Tunga, Y., & Çağıltay, K. (2023). Myths or facts: Prevalence and predictors of neuromyths among Turkish teachers. Education & Science, 48(216), 229-246. https://doi.org./10.15390/EB.2023.12089
  • Ullah, I., Khan, K. S., Tahir, M. J., Ahmed, A., & Harapan, H. (2021). Myths and conspiracy theories on vaccines and COVID-19: Potential effect on global vaccine refusals. Vacunas, 22(2), 93-97. https://doi.org/10.1016/j.vacun.2021.01.001
  • Velander, J., Taiye, M. A., Otero, N., & Milrad, M. (2024). Artificial Intelligence in K-12 Education: Eliciting and reflecting on Swedish teachers’ understanding of AI and its implications for teaching & learning. Education and Information Technologies, 29, 4085–4105. https://doi.org/10.1007/s10639-023-11990-4
  • Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed.) (pp. 11-30). Routledge.

Year 2025, Volume: 12 Issue: 3, 292 - 311, 01.05.2025
https://doi.org/10.17275/per.25.45.12.3

Abstract

References

  • Aravind, M. (2025). Debunking myths about Enhanced Recovery After Surgery (ERAS) using Generative Artificial Intelligence. Clinical Nutrition ESPEN, 65, 530-531. https://doi.org/10.1016/j.clnesp.2024.10.104
  • Atkinson, R. D. (2016). 'It's going to kill us!' and other myths about the future of artificial intelligence. Information Technology & Innovation Foundation. https://ssrn.com/abstract=3066182
  • Berliner, D. C., & Glass, G. V. (Eds.). (2014). 50 myths and lies that threaten America's public schools: The real crisis in education. Teachers College Press.
  • Bewersdorff, A., Zhai, X., Roberts, J., & Nerdel, C. (2023). Myths, mis-and preconceptions of artificial intelligence: A review of the literature. Computers and Education: Artificial Intelligence, 4, 100143. https://doi.org/10.1016/j.caeai.2023.100143
  • Bragazzi, N. L., & Garbarino, S. (2024). Assessing the accuracy of generative conversational artificial intelligence in debunking sleep health myths: Mixed methods comparative study with expert analysis. JMIR Formative Research, 8(1), e55762. https://formative.jmir.org/2024/1/e55762
  • Cave, S., Coughlan, K., & Dihal, K. (2019). "Scary robots": Examining public responses to AI. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 331-337). https://doi.org/10.1145/3306618.3314232
  • Chi, M. T. H. (2009). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61-82). Routledge.
  • Chowdhary, K.R. (2020). Introducing artificial intelligence. In Fundamentals of artificial intelligence. Springer. https://doi.org/10.1007/978-81-322-3972-7_1
  • Cook, J., Ecker, U., & Lewandowsky, S. (2015). Misinformation and how to correct it. In R.A. Scott & S.M. Kosslyn (Eds.), Emerging trends in the social and behavioral sciences (pp. 1-17). https://doi.org/10.1002/9781118900772.etrds0222
  • Davis, L. L. (1992). Instrument review: Getting the most from a panel of experts. Applied Nursing Research, 5(4), 194-197. https://doi.org/10.1016/S0897-1897(05)80008-4
  • De Bruyckere, P., Kirschner, P. A., & Hulshof, C. D. (2015). Urban myths about learning and education. Academic Press.
  • Duymaz, Y., & Şahin, Ş. (2023). From ancient mythology to modern technology: The historical evolution of artificial intelligence. European Journal of Therapeutics, 29(4), 964–965. https://doi.org/10.58600/eurjther1895
  • Ecker, U. K. H., Swire, B., & Lewandowsky, S. (2014). Correcting misinformation—A challenge for education and cognitive science. In D. N. Rapp & J. L. G. Braasch (Eds.), Processing inaccurate information: Theoretical and applied perspectives from cognitive science and the educational sciences (pp. 13–37). The MIT Press.
  • Ecker, U. K., Lewandowsky, S., Cook, J., Schmid, P., Fazio, L. K., Brashier, N., ... & Amazeen, M. A. (2022). The psychological drivers of misinformation belief and its resistance to correction. Nature Reviews Psychology, 1(1), 13-29. https://doi.org/10.1038/s44159-021-00006-y
  • Emmert-Streib, F., Yli-Harja, O., & Dehmer, M. (2020). Artificial intelligence: A clarification of misconceptions, myths and desired Status. Frontiers in Artificial Intelligence, 3(524339). https://doi.org/10.3389/frai.2020.524339
  • Galanos, V., Bennett, S., Aylett, R., & Hemment, D. (2023). AI myths debunked: Unpacking six common misconceptions. The New Real Magazine, 1(1), 79–83. https://doi.org/10.2218/newreal.9267
  • Gardner, R. M., & Brown, D. L. (2013). A test of contemporary misconceptions in psychology. Learning and Individual Differences, 24, 211–215. https://doi.org/10.1016/j.lindif.2012.12.008
  • Giuliano, R. (2020). Echoes of myth and magic in the language of artificial intelligence. AI & Society, 35, 1009 - 1024. https://doi.org/10.1007/s00146-020-00966-4
  • Giray, L. (2024). Ten myths about artificial intelligence in education. Higher Learning Research Communications, 14(2), 1–12. https://files.eric.ed.gov/fulltext/EJ1454533.pdf
  • Guerrero, S., Sebastián-Enesco, C., Perez, N., & Enesco, I. (2019). Myths in science: Children trust but do not retain their teacher's information. Journal of Applied Developmental Psychology, 62, 116-121. https://doi.org/10.1016/j.appdev.2019.02.007
  • Heffernan, T. (2020). The dangers of mystifying artificial intelligence and robotics. Toronto Journal of Theology, 36, 93-95. https://doi.org/10.3138/tjt-2020-0029
  • Hirsch-Kreinsen, H., & Krokowski, T. (2024). Promises and myths of artificial intelligence. Weizenbaum Journal of the Digital Society, 4(1). https://doi.org/10.34669/WI.WJDS/4.1.6
  • JASP Team (2024). JASP (Version 0.18.3) [Computer software]. https://jasp-stats.org/download/
  • Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., & Papin, K. (2023). Generative AI and teachers’ perspectives on its implementation in education. Journal of Interactive Learning Research, 34(2), 313-338. https://www.learntechlib.org/primary/p/222363/
  • Larson, E. J. (2021). The myth of artificial intelligence: Why computers can't think the way we do. Harvard University Press. https://doi.org/10.4159/9780674259935
  • Leufer, D. (2020). Why we need to bust some myths about AI. Patterns, 1(7). https://doi.org/10.1016/j.patter.2020.100124
  • Leufer, D., Steinbrück, A., & Liptakova, Z. (2020). AI myths. https://www.aimyths.org/
  • Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N., & Cook, J. (2012). Misinformation and its correction: Continued influence and successful debiasing. Psychological Science in the Public Interest, 13(3), 106-131. https://doi.org/10.1177/1529100612451018
  • Lewandowsky, S., Cook, J., Ecker, U. K. H., Albarracín, D., Amazeen, M. A., Kendeou, P., Lombardi, D.,Newman, E. J., Pennycook, G., Porter, E. Rand, D. G., Rapp, D. N., Reifler, J., Roozenbeek, J., Schmid, P.,Seifert, C. M., Sinatra, G. M., Swire-Thompson, B., van der Linden, S., Vraga, E. K., Wood, T. J., & Zaragoza,M. S. (2020). The debunking handbook 2020. https://digitalcommons.unl.edu/scholcom/245/
  • Lilienfeld, S. O., Lynn, S. J., Ruscio, J., & Beyerstein, B. L. (2010). 50 great myths of popular psychology: Shattering widespread misconceptions about human behavior. Wiley Blackwell.
  • Loomba, S., De Figueiredo, A., Piatek, S. J., De Graaf, K., & Larson, H. J. (2021). Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nature Human Behaviour, 5(3), 337-348. https://doi.org/10.1038/s41562-021-01056-1
  • Natale, S., & Ballatore, A. (2020). Imagining the thinking machine: Technological myths and the rise of artificial intelligence. Convergence: The International Journal of Research into New Media Technologies, 26(1), 3-18. https://doi.org/10.1177/1354856517715164
  • Omisakin, O. A., Ulrich-Schad, J. D., Hunt, A., Givens, J. E., & Beacham, M. (2023). Belief in vaccine myths and vaccine uptake in Utah during the COVID-19 pandemic. Preventive Medicine Reports, 36, 102390. https://doi.org/10.1016/j.pmedr.2023.102390
  • Organisation for Economic Co-operation and Development (OECD) (2002). Understanding the brain towards a new learning science. OECD Publishing, Paris. https://doi.org/10.1787/9789264174986-en.
  • O’Regan, G. (2016). History of artificial intelligence. In Introduction to the history of computing. Springer. https://link.springer.com/chapter/10.1007/978-3-319-33138-6_19
  • Pasquinelli, E. (2012). Neuromyths: Why do they exist and persist? Mind, Brain, and Education, 6(2), 89–96. https://doi.org/10.1111/j.1751-228X.2012.01141.x
  • Pesapane, F., Tantrige, P., Patella, F., Biondetti, P., Nicosia, L., Ianniello, A., Rossi, U., Carrafiello, G., & Ierardi, A. (2020). Myths and facts about artificial intelligence: Why machine- and deep-learning will not replace interventional radiologists. Medical Oncology, 37, 1-9. https://doi.org/10.1007/s12032-020-01368-8
  • Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Research in Nursing & Health, 30(4), 459-467. https://doi.org/10.1002/nur.20199
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207
  • Rogers, J., & Cheung, A. (2020). Pre-service teacher education may perpetuate myths about teaching and learning. Journal of Education for Teaching, 46(3), 417-420. https://doi.org/10.1080/02607476.2020.1766835
  • The Council of Higher Education (HEC). (2024). Yapay zeka, dijitalleşme ve büyük veri alanlarında yeni programlar [New programs in the fields of artificial intelligence, digitalization, and big data]. https://www.yok.gov.tr/Sayfalar/Haberler/2024/yapay-zeka-dijitallesme-buyuk-veri-yeni-programlar.aspx
  • Torrijos-Muelas, M., González-Víllora, S. ve Bodoque-Osma, A. R. (2021). The persistence of neuromyths in the educational settings: A systematic review. Frontiers in Psychology, 11, 591923. https://doi.org/10.3389/fpsyg.2020.591923
  • Tunga, Y., & Çağıltay, K. (2023). Myths or facts: Prevalence and predictors of neuromyths among Turkish teachers. Education & Science, 48(216), 229-246. https://doi.org./10.15390/EB.2023.12089
  • Ullah, I., Khan, K. S., Tahir, M. J., Ahmed, A., & Harapan, H. (2021). Myths and conspiracy theories on vaccines and COVID-19: Potential effect on global vaccine refusals. Vacunas, 22(2), 93-97. https://doi.org/10.1016/j.vacun.2021.01.001
  • Velander, J., Taiye, M. A., Otero, N., & Milrad, M. (2024). Artificial Intelligence in K-12 Education: Eliciting and reflecting on Swedish teachers’ understanding of AI and its implications for teaching & learning. Education and Information Technologies, 29, 4085–4105. https://doi.org/10.1007/s10639-023-11990-4
  • Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed.) (pp. 11-30). Routledge.
There are 46 citations in total.

Details

Primary Language English
Subjects Higher Education Studies (Other), Specialist Studies in Education (Other)
Journal Section Research Articles
Authors

Yeliz Tunga 0000-0002-4046-4198

Ali Geriş 0000-0003-2136-5490

Berkan Çelik 0000-0002-7068-8918

Early Pub Date May 7, 2025
Publication Date May 1, 2025
Submission Date November 19, 2024
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Tunga, Y., Geriş, A., & Çelik, B. (2025). Artificial Intelligence Myths: Prevalence Among Turkish University Students and Comparative Analysis of ChatGPT Responses. Participatory Educational Research, 12(3), 292-311. https://doi.org/10.17275/per.25.45.12.3