Year 2016, Volume 8 , Issue 1, Pages 1 - 18 2016-01-23

Novel Codes of Psychiatry: microRNAs
Psikiyatrinin Yeni Kodları: MikroRNA’lar

Mehmet Camkurt [1] , Salih Coşkun [2] , Serkan Güneş [3] , Nermin Yücel [4]


Current knowledge on neurobiology and genetics of psychiatric disorders are limited. MicroRNA are approximately 22 nucleotides long. Their biogenesis starts in the nucleus and maturation continues in the cytoplasm of cells. MicroRNA influence the genes in posttranscriptional level that commonly appear as inhibition. MicroRNAs are crucial for neurogenesis, synaptic plasticity and several neurobiological processes. For psychiatric disorders they are found to be dysregulated in both central nervous system and peripheral tissues. Knowledge and research on microRNAs keep evolving day by day. Although they have been investigated widely, we still need extensive research on this field.
 
Psikiyatrik bozuklukların nörobiyolojisi ve genetiği halen tam olarak anlaşılabilmiş değildir. MikroRNA’lar çekirdekte sentezlenip olgunlaşmasını sitoplazmada devam ettiren, yaklaşık 22 nükleotid uzunluğuna erişen, genlerin açılımını post-transkripsiyonel aşamalarda etkileyen yapılardır. Sıklıkla inhibisyon yönünde etki eden bu yapıların sinaptik plastisite, nörogenez ve diğer nörobiyolojik süreçlerde oldukça önemli bir role sahip oldukları, psikiyatrik hastalıklarda gerek santral gerekse periferik dokularda disregüle oldukları gösterilmiştir. MikroRNA’ların zaman geçtikçe gelişen ve gençleşen bir alan olduğu, bugüne kadar yapılmış olan çalışmaların ilerde yapılacak olan çalışmalara ışık tutacağı ve halen yeni çalışmalara ihtiyaç duyulduğu akılda tutulmalıdır.
Psikiyatri, mikroRNA, nörobiyoloji
  • Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH et al. (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics, 9:153–161.
  • Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ et al. (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: The SzGene Database. Nat Genet, 40:827–834.
  • Aluru N, Deak KL, Jenny MJ, Hahn ME (2013) Developmental exposure to valproic acid alters the expression of micrornas ınvolved in neurodevelopment in zebrafish. Neurotoxicol Teratol, 40:46–58.
  • American Psychiatric Association (2013) The Diagnostic and Statistical Manual of Mental Disorders: DSM 5. Washington D.C., American Psychiatric Publishing.
  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23:185-188.
  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory ıs regulated by the RISC pathway in drosophila. Cell, 124:191–205.
  • Banigan MG, Kao PF, Kozubek J a, Winslow AR, Medina J, Costa J et al. (2013) Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PloS One, 8:e48814.
  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116:281–297.
  • Basu SN, Kollu R, Banerjee-Basu S (2009) AutDB: a gene reference resource for autism research. Nucleic Acids Res, 37(suppl 1):D832–836.
  • Baudry A, Mouillet-Richard S, Schneider B, Launay J, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science, 329(5998):1537–1541.
  • Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD et al. (2015) Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry, 20:573–584.
  • Belzeaux R, Bergon a, Jeanjean V, Loriod B, Formisano-Tréziny C, Verrier L et al. (2012) Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry, 2:e185.
  • Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2009) Schizophrenia ıs associated with an increase in cortical microRNA biogenesis. Mol Psychiatry, 15:1176–1189.
  • Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ et al. (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet, 17:1156–1168.
  • Blackwood DH, Pickard BJ, Thomson PA, Evans KL, Porteous DJ, Muir WJ (2007) Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? evidence from DISC1, GRIK4 and NRG1. Neurotox Res, 11:73-83.
  • Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D et al. (2013) Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol, 23:602–611.
  • Burmeister M (1999) Basic concepts in the study of diseases with complex genetics. Biol Psychiatry, 45:522–532.
  • Camkurt MA (2014) Plasma microRNA levels between depressed patients and healthy controls (Uzmanlık tezi). Mersin, Mersin Üniversitesi.
  • Camkurt MA (2015) Majör depresyonun tedavisinde ve etyolojisinde yeni umutlar, yeni ufuklar: mikroRNA’lar. Journal of Mood Disorders, 5:23–30.
  • Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow‐and‐arrow concordances to star wars mx and functional genomics. Am J Med Genet, 97:12–17.
  • Castrén E (2005) Is mood chemistry? Nat Rev Neurosci, 6:241–246.
  • Chapleau CA, Lane J, Pozzo-Miller L, Percy AK (2013) Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. Curr Clin Pharmacol, 8:358-369.
  • Chen H, Wang N, Burmeister M, McInnis MG (2009) MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol, 12:975–981.
  • Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA et al. (2007) MicroRNA silencing through rısc recruitment of eIF6. Nature, 447(7146):823–828.
  • Cheng L, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci, 12:399–408.
  • Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA et al. (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57:41–55.
  • Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem, 285:38951–38960.
  • DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology, 58:884–893.
  • Devys D, Lutz Y, Rouyer N, Bellocq J, Mandel J (1993) The FMR–1 protein ıs cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet, 4:335–340.
  • Dupret D, Revest J-M, Koehl M, Ichas F, De Giorgi F, Costet P et al. (2008) Spatial relational memory requires hippocampal adult neurogenesis. PloS One, 3:e1959.
  • Durkin MS, Maenner MJ, Newschaffer CJ, Lee L-C, Cunniff CM, Daniels JL et al. (2008) Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol, 168:1268–1276.
  • Edbauer D, Neilson JR, Foster KA, Wang C-F, Seeburg DP, Batterton MN et al. (2010) Regulation of Synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 65:373–384.
  • Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: Is It an American condition? World Psychiatry, 2:104-113.
  • Fu Y-H, Kuhl D, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S et al. (1991) Variation of the CGG repeat at the Fragile X Site results in genetic instability: resolution of the Sherman paradox. Cell, 67:1047–1058.
  • Garcia R (2002) Stress, synaptic plasticity, and psychopathology. Rev Neurosci, 13:195–208.
  • Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s Disease. Exp Neurol, 235:491–496.
  • Greenberg DA, Hodge SE, Sowinski J, Nicoll D (2001) Excess of twins among affected sibling pairs with autism: ımplications for the etiology of autism. Am J Hum Genet, 69:1062–1067.
  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123:631–640.
  • Guipponi M, Santoni FA, Setola V, Gehrig C, Rotharmel M, Cuenca M et al. (2014) Exome sequencing in 53 sporadic cases of schizophrenia ıdentifies 18 putative candidate genes. PloS One, 9:e112745.
  • Haramati S, Navon I, Issler O, Ezra-Nevo G, Gil S, Zwang R et al (2011) MicroRNA as repressors of stress-ınduced anxiety: the case of amygdalar miR-34. J Neurosci, 31:14191–14203.
  • Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN et al. (2008) Loss of microRNA custer miR- 29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci, 105:6415–6420.
  • Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA et al. (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci, 7:113–117.
  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2005) Correction: human microrna targets. PLoS Biology, 3:e264.
  • Kandemir H, Erdal ME, Selek S, Ay Öİ, Karababa İF, Kandemir SB et al. (2014) Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci Lett, 580:158–162.
  • Kessler RC, Üstün TB (2004) The World Mental Health (WMH) Survey initiative version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int J Methods Psychiatr Res, 13:93–121.
  • Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL et al. (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res, 124:183–191.
  • Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci, 10:1513–1514.
  • Kuhn M, Höger N, Feige B, Blechert J, Normann C, Nissen C (2014) Fear extinction as a model for synaptic plasticity in major depressive disorder. PLoS One, 9:e115280.
  • Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, Wen CC et al. (2011) MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PloS One, 6:e21635.
  • Lee Y, Ahn C, Han J, Choi H, Kim J Yim J et al. (2003) The nuclear RNase III drosha initiates microRNA processing. Nature, 425:415– 419.
  • Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K et al (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol, 14:R78.
  • Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang YX et al. (2013) Alterations of serum levels of BDNF-related miRNAs in patients with depression. PloS One, 8:e63648.
  • Liu X, Zhang L, Cheng K, Wang X, Ren G, Xie P (2014) Identification of suitable plasma-based reference genes for miRNAome analysis of major depressive disorder. J Affect Disord, 163:133-139.
  • Lord C, Michael R, Couteur AL (1994) Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of ındividuals with possible pervasive developmental disorders. J Autism Dev Disord, 24:659–685.
  • Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport, 18:297–300.
  • McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A (2003) The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry, 60:497–502.
  • Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D (2010) Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci, 40:47–55.
  • Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J et al. (2012) MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci, 109:3125–3130.
  • Moreau MP, Bruse SH, David-Rus R, Buyske S, Brzustowicz LM (2011) Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry, 69:188–193.
  • Muiños-Gimeno M (2011) Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry, 69:526–533.
  • Muiños-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipilä T, Maron E et al. (2009) Allele variants in functional microRNA target sites of the neurotrophin‐3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat, 30:1062–1071.
  • Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S et al. (2008) MeCP2-dependent repression of an ımprinted miR-184 Released by Depolarization. Hum Mol Genet, 17(8):1192–1199.
  • Normann C, Schmitz D, Fürmaier A, Döing C, Bach M (2007) Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry, 62:373–380.
  • O’Connor RM, Grenham S, Dinan TG, Cryan JF (2013) microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol, 16:1885-1892.
  • Oved K, Morag A, Shomron N, Rehavi M, Stingl JC, Gurwitz D (2012). Genome-wide miRNA expression profiling of human lymphoblastoid cell lines ıdentifies tentative SSRI antidepressant response biomarkers. Transl Psychiatry, 3:e313.
  • Owen MJ, Williams NM, O’Donovan MC (2003) The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry, 9:14–27.
  • Özdemir O, Boysan M, Özdemir PG, Coşkun S, Özcan H, Yılmaz E et al (2015) Family patterns of psychopathology in psychiatric disorders. Compr Psychiatry, 56:161–174.
  • Parsons MJ, Grimm CH, Paya-Cano JL, Sugden K, Nietfeld W, Lehrach H et al (2008) Using hippocampal microRNA expression differences between mouse ınbred strains to characterise miRNA function. Mamm Genome, 19:552–560.
  • Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA et al. (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol, 8:R27.
  • Porteous D (2008) Genetic causality in schizophrenia and bipolar disorder: out with the old and in with the new. Curr Opin Genet Dev, 18:229–234.
  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ et al. (2009) Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron, 63:803–817.
  • Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C et al. (2010) Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res, 208:265–269.
  • Rong H, Liu TB, Yang KJ, Yang HCHZ, Wu DH, Liao CP et al. (2011) microRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res, 45:92–95.
  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass drosha processing. Nature, 448:83–86.
  • Ryan KM, O’Donovan SM, McLoughlin DM (2013) Electroconvulsive stimulation alters levels of BDNF-associated microRNAs. Neurosci Lett, 549:125–129.
  • Saha S, Chant D, Welham J, McGrath J (2005) A systematic review of the prevalence of schizophrenia. PLoS Med, 2:e141.
  • Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of Dicer and microRNA expression in the dorsolateral prefrontal cortex brodmann area 46 in schizophrenia. Biol Psychiatry, 69:180–187.
  • Schipper HM, Maes OC, Chertkow HM, Wang E (2007) microRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio, 1:263–274.
  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al. (2006) A brain-specific microRNA regulates dendritic spine development. Nature, 439:283–289.
  • Shi W, Du J, Qi Y, Liang G, Wang T, Li S et al. (2012) Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res, 46:198–204.
  • Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik VI, Pandey GN et al. (2011) microRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol, 14:1315–1325.
  • Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y (2014) Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PloS One, 9:e86469.
  • Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromolecular Med 11:133–140.
  • Smalheiser NR, Zhang H, Dwivedi Y (2014) Enoxacin elevates microRNA levels in rat frontal cortex and prevents learned helplessness. Front Psychiatry, 5:6.
  • Song H, Sun X, Zhang L, Zhao L, Guo Z, Fan H et al. (2014) A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology ımprovement in schizophrenia patients before and after antipsychotic treatment. J Psychiatr Res, 54:134–140.
  • Spedding M, Neau I, Harsing L (2003) Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr Opin Pharmacol, 3:33–40.
  • Talebizadeh Z, Butler MG, Theodoro MF (2008) Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res, 1:240–250.
  • Uchida S, Nishida A, Hara K, Kamemoto T, Suetsugi M, Fujimoto M et al. (2008) Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. Eur J Neurosci, 27:2250–2261.
  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al. (2005) A cAMP-response element binding protein- induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A, 102:16426–16431.
  • Wang W-X, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q et al. (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci, 28:1213–1223.
  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HYM et al. (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A, 105:9093–9098.
  • Williams HJ, Owen MJ, O’Donovan MC (2009) New findings from genetic association studies of schizophrenia. J Hum Genet, 54:9– 14.
  • Xu X, Li Y, Wang F, Gao F (2008) The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in drosophila. J Neurosci, 28:11883–11889.
  • Z Zhang J, Liu Q, Zhang W, Li J, Li Z, Tang Z et al. (2010) Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin, 42:145–153.
  • Zhang Z, Convertini P, Shen M, Xu X, Lemoine F, de la Grange P et al. (2013) Valproic acid causes proteasomal degradation of DICER and influences miRNA expression. PloS One, 8:e82895.
  • Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y et al (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34:1395–1405. Mehmet Akif Camkurt, Uzm.Dr., Afşin Devlet Hastanesi, Kahramanmaraş; Salih Coşkun, Uzm.Dr, Dicle Üniversitesi, Diyarbakır; Serkan Güneş, Uzm.Dr., Mersin Üniversitesi, Mersin; Nermin Yücel, Uzm.Dr., Atatürk Üniversitesi, Erzurum.
Primary Language tr
Journal Section Review
Authors

Author: Mehmet Camkurt

Author: Salih Coşkun

Author: Serkan Güneş

Author: Nermin Yücel

Dates

Acceptance Date : November 21, 2019
Publication Date : January 23, 2016

Bibtex @ { pgy133515, journal = {Psikiyatride Güncel Yaklaşımlar}, issn = {1309-0658}, eissn = {1309-0674}, address = {}, publisher = {Lut TAMAM}, year = {2016}, volume = {8}, pages = {1 - 18}, doi = {10.18863/pgy.64938}, title = {Psikiyatrinin Yeni Kodları: MikroRNA’lar}, key = {cite}, author = {Camkurt, Mehmet and Coşkun, Salih and Güneş, Serkan and Yücel, Nermin} }
APA Camkurt, M , Coşkun, S , Güneş, S , Yücel, N . (2016). Psikiyatrinin Yeni Kodları: MikroRNA’lar. Psikiyatride Güncel Yaklaşımlar , 8 (1) , 1-18 . Retrieved from https://dergipark.org.tr/en/pub/pgy/issue/11171/133515
MLA Camkurt, M , Coşkun, S , Güneş, S , Yücel, N . "Psikiyatrinin Yeni Kodları: MikroRNA’lar". Psikiyatride Güncel Yaklaşımlar 8 (2016 ): 1-18 <https://dergipark.org.tr/en/pub/pgy/issue/11171/133515>
Chicago Camkurt, M , Coşkun, S , Güneş, S , Yücel, N . "Psikiyatrinin Yeni Kodları: MikroRNA’lar". Psikiyatride Güncel Yaklaşımlar 8 (2016 ): 1-18
RIS TY - JOUR T1 - Psikiyatrinin Yeni Kodları: MikroRNA’lar AU - Mehmet Camkurt , Salih Coşkun , Serkan Güneş , Nermin Yücel Y1 - 2016 PY - 2016 N1 - DO - T2 - Psikiyatride Güncel Yaklaşımlar JF - Journal JO - JOR SP - 1 EP - 18 VL - 8 IS - 1 SN - 1309-0658-1309-0674 M3 - UR - Y2 - 2019 ER -
EndNote %0 Psikiyatride Güncel Yaklaşımlar Psikiyatrinin Yeni Kodları: MikroRNA’lar %A Mehmet Camkurt , Salih Coşkun , Serkan Güneş , Nermin Yücel %T Psikiyatrinin Yeni Kodları: MikroRNA’lar %D 2016 %J Psikiyatride Güncel Yaklaşımlar %P 1309-0658-1309-0674 %V 8 %N 1 %R %U
ISNAD Camkurt, Mehmet , Coşkun, Salih , Güneş, Serkan , Yücel, Nermin . "Psikiyatrinin Yeni Kodları: MikroRNA’lar". Psikiyatride Güncel Yaklaşımlar 8 / 1 (January 2016): 1-18 .
AMA Camkurt M , Coşkun S , Güneş S , Yücel N . Psikiyatrinin Yeni Kodları: MikroRNA’lar. pgy. 2016; 8(1): 1-18.
Vancouver Camkurt M , Coşkun S , Güneş S , Yücel N . Psikiyatrinin Yeni Kodları: MikroRNA’lar. Psikiyatride Güncel Yaklaşımlar. 2016; 8(1): 18-1.