Research Article
BibTex RIS Cite

Türkiye’de İntihar Konusuna Yönelik Dijital Arama Eğilimleri: İnfodemiyolojik Bir İnceleme

Year 2025, Volume: 17 Issue: Supplement 1, 345 - 353
https://doi.org/10.18863/pgy.1758891

Abstract

Amaç: İnfodemiyoloji, elektronik ortamdaki bilgi akışını ve bunun belirleyicilerini inceleyen bilim dalı olarak sağlık bilişimi içerisinde önemli bir yer edinmiştir. Dijital veri kaynaklarının analizine dayanan bu yaklaşım, halk sağlığına yönelik eğilimlerin izlenmesi ve sağlık politikalarının şekillendirilmesi açısından önemli bilgiler sunmaktadır. Bu çalışmanın amacı, intihar konusuna ilişkin internet kullanıcılarının arama davranışlarını inceleyerek Türkiye’deki dijital eğilimleri ortaya koymaktır.
Yöntem: Araştırma, infodemiyolojik desen kullanılarak gerçekleştirilmiştir. Veriler, Temmuz 2025 tarihinde “intihar” anahtar kelimesiyle Google Trends üzerinden toplanmıştır. Tarama kapsamında son beş yıla (Temmuz 2020-Temmuz 2025) ait veriler incelenmiş; ülke olarak Türkiye, kategori olarak “tüm kategoriler” ve arama türü olarak “Google Web Arama” seçenekleri tercih edilmiştir.
Bulgular: Türkiye'de 2020 – 2025 yılları arasında “intihar” anahtar kelimesine yönelik dijital arama ilgisi dalgalı bir seyir izlemiştir. Bu durum, toplumda intihar konusuna yönelik sürekli bir merak, kaygı ya da bilgi ihtiyacının varlığına işaret etmektedir. Arama geçmişi incelendiğinde, kullanıcıların yalnızca “intihar” terimini değil, aynı zamanda bu konuyla ilişkili olarak “ölüm”, “intihar yöntemleri” ve “intihar notu” gibi farklı anahtar kelimelerle de arama yaptığı gözlemlenmiştir. Bu bulgu, kullanıcıların yalnızca intihar kavramına değil, bu kavramın farklı yönlerine örneğin uygulama biçimlerine ve geride bırakılan duygusal içeriklere dair bilgi arayışında olduğunu göstermektedir. Dolayısıyla, intihara ilişkin çevrimiçi arama davranışlarının yalnızca tek bir temada açıklanamayacağı; psikolojik, sosyolojik ve eylemsel bileşenleri kapsayan çok yönlü bir merakı yansıttığı söylenebilir.
Sonuç: Bu çalışma, toplumun intihar konusuna yönelik çevrimiçi bilgi arama eğilimlerini ortaya koymaktadır. Arama davranışlarının bilgi edinme amacı mı yoksa damgalanmadan kaçınma isteğiyle mi gerçekleştiğini belirleyebilmek için nitel verilerle desteklenmiş ileri düzey araştırmalara ihtiyaç vardır. Ayrıca, arama verileri üzerinden ruh sağlığı hizmetlerine erişim, toplumsal farkındalık düzeyi ve medya etkileri gibi faktörlerin değerlendirilmesi, toplum temelli ruh sağlığı politikalarının geliştirilmesine katkı sağlayabilir.

References

  • Ahmed Z (2024) Loneliness and suicidal behaviors: A fresh mental health concern in post COVID-19 pandemic period. In: Determinants of Loneliness (Ed. Z Ahmed):9. London, Intech Open.
  • Alptekin K, Duyan V (2019) What was the distribution of suicide rates by socio-demographic factors between 2007 and 2016 in Turkey? Journal of Psychiatric Nursing, 10:270-276.
  • Aslan A (2023) Afetler ve göç: Kahramanmaraş depremleri. İzmir Katip Çelebi Üniv Sağlık Bilimleri Fakültesi Dergisi, 8:787-789.
  • Ayers JW, Althouse BM, Allem JP, Rosenquist JN, Ford DE (2013) Seasonality in seeking mental health information. Am J Prev Med, 44:520-525.
  • Barros JM, Melia R, Francis K, Bogue J, O’Sullivan M, Young K et al. (2019) The validity of Google Trends search volumes for behavioral forecasting of national suicide rates in Ireland. Int J Environ Res Public Health, 16:3201.
  • Bragazzi NL (2013) Infodemiology and infoveillance of multiple sclerosis in Italy. Mult Scler Int, 2013:924029.
  • Brownstein JS, Freifeld CC, Madoff LC (2009) Digital disease detection-harnessing the web for public health surveillance. N Engl J Med, 360:2153-2157.
  • Cumhuriyet (2025) Marmaray’da intihar! Açıklama geldi. https://www.cumhuriyet.com.tr/turkiye/marmaray-da-intihar-aciklama-geldi-2411747 (Accessed 04.08.2025).
  • Çetin B (2023) Werther etkisi yaklaşımı ve Türkiye’de intihar haberlerinin dijital gazetecilik bağlamında değerlendirilmesi. Turkish Studies Social Sciences, 18:393-416.
  • Deniz S (2020) Bireylerin e-sağlık okuryazarlığı ve siberkondri düzeylerinin incelenmesi. İnsan ve İnsan, 7:84-96.
  • Deyirmenci B (2020) Pazarlama harcamaları ile Google Trends hacmi arasındaki nedensellik ilişkisinin incelenmesi: Turkcell örneği (Doktora tezi). İstanbul, İstanbul Gelişim Üniversitesi.
  • Ekinci O, Gencay FB, Koyuncu AN, Soy FN, Çetin O, Yüce F et al. (2023) Assessment of the relationship between Google Trends search data and national suicide rates in Türkiye. Annals of Medical Research, 30:767-773.
  • Erdem M, Kesgin B, Zengin O (2024) İntihar riski olan bireylerde varoluşsal analiz ve logoterapinin etkililiği. Toplum ve Sosyal Hizmet, 35:445-465.
  • Eysenbach G (2009) Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the internet. J Med Internet Res, 11:e11.
  • Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) Detecting influenza epidemics using search engine query data. Nature, 457:1012–1014.
  • Halford EA, Lake AM, Gould MS (2020) Google searches for suicide and suicide risk factors in the early stages of the COVID-19 pandemic. PLoS One, 15:e0236777.
  • Han Yekdeş D, Çağlayan M, Yekdeş AC, Takir Stewart S, Selçuk EG, Çelikkalp U et al. (2025) Trends and socio-demographic determinants of suicide-related mortality in Türkiye: An epidemiological study from 2009 to 2022. Int J Soc Psychiatry, 71:188-198.
  • Hoerger M, Alonzi S, Perry LM, Voss HM, Easwar S, Gerhart JI (2020) Impact of the COVID-19 pandemic on mental health: Real-time surveillance using Google Trends. Psychol Trauma, 12:567-568.
  • Hoşgör HK, Hoşgör DG (2024) Sağlık alanında Google trendler analizinin kullanıldığı araştırmalar üzerine bir inceleme. Journal of Academic Value Studies, 10:72-90
  • Hung WC, Wu CY, Lee MB, Chan CT, Chen CY (2024) Loneliness and suicide risks in the general population before and during first year COVID 19 in Taiwan. J Formos Med Assoc, 123:510-516.
  • Jena AB, Karaca-Mandic P, Weaver L, Seabury SA (2013) Predicting new diagnoses of HIV infection using internet search engine data. Clin Infect Dis, 56:1352-1353.
  • Kim K, Kim J, Jung S, Kim HW, Kim HS, Son E et al. (2025) Global prevalence of seasonal affective disorder by latitude: A systematic review and meta-analysis. J Affect Disord, 390:119807.
  • Knipe D, Gunnell D, Evans H, John A, Fancourt D (2021) Is Google Trends a useful tool for tracking mental and social distress during a public health emergency? a time-series analysis. J Affect Disord, 294:737-744.
  • Kristoufek L, Moat HS, Preis T (2016) Estimating suicide occurrence statistics using Google Trends. EPJ Data Sci, 5:32.
  • Küçükali H (2021) İnfodemiyoloji, dijital epidemiyoloji ve teleepidemiyoloji. Sağlık Düşüncesi ve Tıp Kültürü, 59:40-41.
  • Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google flu: Traps in big data analysis. Science, 343:1203-1205.
  • Lee JY (2020) Search trends preceding increases in suicide: A cross-correlation study of monthly Google search volume and suicide rate using transfer function models. J Affect Disord, 262:155-164.
  • Lin YH, Chiang TW, Lin YL (2020) Increased internet searches for insomnia as a sensitive indicator for global mental health during the COVID-19 pandemic: Multinational longitudinal study. J Med Internet Res, 22:e22181.
  • Mavragani A, Ochoa G (2019) Google Trends in infodemiology and infoveillance: Methodology framework. JMIR Public Health Surveill, 5:e13439.
  • McCarthy MJ (2010) Internet monitoring of suicide risk in the population. J Affect Disord, 122:277-279.
  • Moccia M, Palladino R, Falco A, Saccà F (2016) Google Trends: New evidence for seasonality of multiple sclerosis. J Neurol Neurosurg Psychiatry, 87:1028-1029.
  • Onur B, Demirtaş HB, Gülmez A (2024) Sağlık trendlerinin belirlenmesinde dijital platformlardan elde edilen verilerin rolü. Journal of Medical Sciences, 5:178-179.
  • Park HA, Jung H, On J, Park SK, Kang H (2018) Digital intervention to recognise and manage early warning signs of relapse in schizophrenia (EMPOWER). Healthc Inform Res, 24:253-262.
  • Rapuru R, Vellapandian C (2025) Exploring infodemiology: Unraveling the intricate relationships among stress, headaches, migraines, and suicide through Google Trends analysis. Front Big Data, 7:1365417.
  • Sahoo S, Sahoo S (2022) An infodemiological study of worldwide Google search volumes for major depressive disorder and persistent depressive disorder. J Affect Disord Rep, 7:100277.
  • Sak FG, Uslu E (2023) Google trend verileri kapsamında infodemiyolojik bir çalışma: Şizofreniye ilişkin bilgi arama eğilimi. Abant Sağlık Bilimleri ve Teknolojileri Dergisi, 3:23-31.
  • Samaras L, García-Barriocanal E, Sicilia MA (2012) Syndromic surveillance models using web data: The case of scarlet fever in the UK. Inform Health Soc Care, 37:106-124.
  • Sisask M, Värnik A (2012) Media roles in suicide prevention: A systematic review. Int J Environ Res Public Health, 9:123-138.
  • Soreni N, Cameron DH, Streiner DL, Rowa K, McCabe RE (2019) Seasonality patterns of Internet searches on mental health: Exploratory infodemiology study. JMIR Ment Health, 6:e12974.
  • Şevik AE, Özcan H, Uysal E (2012) İntihar girişimlerinin incelenmesi: Risk faktörleri ve takip. Klinik Psikiyatri Dergisi, 15:218-225.
  • Tabur A, Sönmez FT (2024) Turkish suicide patterns: Longitudinal analysis of suicide trends in Türkiye (2000-2022). Medicine Science, 13:911-920.
  • Tana JC, Kettunen J, Eirola E, Paakkonen H (2018) Diurnal variations of depression-related health information seeking: Case study in Finland using Google Trends data. JMIR Ment Health, 5:e43.
  • Tran US, Andel R, Niederkrotenthaler T, Till B, Ajdacic-Gross V, Voracek M et al. (2017) Low validity of Google Trends for behavioral forecasting of national suicide rates. PLoS One, 12:e0183149
  • TÜİK (2025) Türkiye İstatistik Kurumu intihar istatistikleri. https://data.tuik.gov.tr/Search/Search?text=intihar&dil=1 (Accessed 02.10.2025).
  • UNDP (2022) Human Development Report 2022: Uncertain Times, Unsettled Lives-Shaping Our Future in a Transforming World. New York, United Nations Development Programme.
  • WHO (2025) Suicide Worldwide in 2025: Global Health Estimates. Geneva, World Health Organization.
  • Yang AC, Tsai SJ, Huang NE, Peng CK (2011) Association of internet search trends with suicide death in Taipei City, Taiwan, 2004-2009. J Affect Disord, 132:179-184.
  • Yaşa H (2024) Internet haber siteleriyle ilişkili kullanıcı arama sorgularının keşfi: Google Trends. Ordu Univ Sosyal Bil Enst Sosyal Bil Arastirmalari Derg, 14:1386-1403.
  • Yıldırım MS, Akçan R, Gül NNA (2024) University student suicides in Türkiye: Insights from two decades of media reports. Health Sciences Quarterly, 4:305-315.
  • Zheng X, Wang Z, Guo J, Xu Z, Zhang Z (2025) Diverse behavior clustering of students on campus with macroscopic multi-source digital data. Sci Rep, 15:15763.

Digital Search Trends on Suicide in Türkiye: An Infodemiological Study

Year 2025, Volume: 17 Issue: Supplement 1, 345 - 353
https://doi.org/10.18863/pgy.1758891

Abstract

Objective: Infodemiology, as a scientific field studying information flow in electronic environments and its factors, has gained significant prominence in health informatics. This approach, which analyzes digital data sources, offers valuable insights for tracking public health trends and informing health policies. The goal of this study is to identify digital trends in Turkey by analyzing internet users’ search behavior related to suicide.
Method: The study was conducted using an infodemiological design. Data were collected in July 2025 with the keyword “suicide” through Google Trends. As part of the screening, data from the past five years (July 2020–July 2025) were analyzed. Türkiye was selected as the country, “all categories” as the category, and “Google Web Search” as the search type.
Results: In Türkiye, interest in digital searches for the keyword “suicide” fluctuated between 2020 and 2025. This pattern indicates a consistent curiosity, concern, or need for information about suicide within society. Examining the search history reveals that users search not only for the term “suicide,” but also for related keywords such as “death,” “suicide methods,” and “suicide note.” This suggests that users are seeking information about various aspects of suicide, including methods and emotional content left behind. Therefore, online search behaviors related to suicide reflect a complex curiosity that involves psychological, sociological, and behavioral factors rather than focusing on a single theme.
Conclusion: This study reveals the online information-seeking trends of society regarding suicide. To determine whether search behavior is driven by a desire for information or by a wish to avoid stigma, advanced research supported by qualitative data is needed. Additionally, evaluating factors such as access to mental health services, levels of societal awareness, and media effects through search data can contribute to the development of community-based mental health policies

References

  • Ahmed Z (2024) Loneliness and suicidal behaviors: A fresh mental health concern in post COVID-19 pandemic period. In: Determinants of Loneliness (Ed. Z Ahmed):9. London, Intech Open.
  • Alptekin K, Duyan V (2019) What was the distribution of suicide rates by socio-demographic factors between 2007 and 2016 in Turkey? Journal of Psychiatric Nursing, 10:270-276.
  • Aslan A (2023) Afetler ve göç: Kahramanmaraş depremleri. İzmir Katip Çelebi Üniv Sağlık Bilimleri Fakültesi Dergisi, 8:787-789.
  • Ayers JW, Althouse BM, Allem JP, Rosenquist JN, Ford DE (2013) Seasonality in seeking mental health information. Am J Prev Med, 44:520-525.
  • Barros JM, Melia R, Francis K, Bogue J, O’Sullivan M, Young K et al. (2019) The validity of Google Trends search volumes for behavioral forecasting of national suicide rates in Ireland. Int J Environ Res Public Health, 16:3201.
  • Bragazzi NL (2013) Infodemiology and infoveillance of multiple sclerosis in Italy. Mult Scler Int, 2013:924029.
  • Brownstein JS, Freifeld CC, Madoff LC (2009) Digital disease detection-harnessing the web for public health surveillance. N Engl J Med, 360:2153-2157.
  • Cumhuriyet (2025) Marmaray’da intihar! Açıklama geldi. https://www.cumhuriyet.com.tr/turkiye/marmaray-da-intihar-aciklama-geldi-2411747 (Accessed 04.08.2025).
  • Çetin B (2023) Werther etkisi yaklaşımı ve Türkiye’de intihar haberlerinin dijital gazetecilik bağlamında değerlendirilmesi. Turkish Studies Social Sciences, 18:393-416.
  • Deniz S (2020) Bireylerin e-sağlık okuryazarlığı ve siberkondri düzeylerinin incelenmesi. İnsan ve İnsan, 7:84-96.
  • Deyirmenci B (2020) Pazarlama harcamaları ile Google Trends hacmi arasındaki nedensellik ilişkisinin incelenmesi: Turkcell örneği (Doktora tezi). İstanbul, İstanbul Gelişim Üniversitesi.
  • Ekinci O, Gencay FB, Koyuncu AN, Soy FN, Çetin O, Yüce F et al. (2023) Assessment of the relationship between Google Trends search data and national suicide rates in Türkiye. Annals of Medical Research, 30:767-773.
  • Erdem M, Kesgin B, Zengin O (2024) İntihar riski olan bireylerde varoluşsal analiz ve logoterapinin etkililiği. Toplum ve Sosyal Hizmet, 35:445-465.
  • Eysenbach G (2009) Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the internet. J Med Internet Res, 11:e11.
  • Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) Detecting influenza epidemics using search engine query data. Nature, 457:1012–1014.
  • Halford EA, Lake AM, Gould MS (2020) Google searches for suicide and suicide risk factors in the early stages of the COVID-19 pandemic. PLoS One, 15:e0236777.
  • Han Yekdeş D, Çağlayan M, Yekdeş AC, Takir Stewart S, Selçuk EG, Çelikkalp U et al. (2025) Trends and socio-demographic determinants of suicide-related mortality in Türkiye: An epidemiological study from 2009 to 2022. Int J Soc Psychiatry, 71:188-198.
  • Hoerger M, Alonzi S, Perry LM, Voss HM, Easwar S, Gerhart JI (2020) Impact of the COVID-19 pandemic on mental health: Real-time surveillance using Google Trends. Psychol Trauma, 12:567-568.
  • Hoşgör HK, Hoşgör DG (2024) Sağlık alanında Google trendler analizinin kullanıldığı araştırmalar üzerine bir inceleme. Journal of Academic Value Studies, 10:72-90
  • Hung WC, Wu CY, Lee MB, Chan CT, Chen CY (2024) Loneliness and suicide risks in the general population before and during first year COVID 19 in Taiwan. J Formos Med Assoc, 123:510-516.
  • Jena AB, Karaca-Mandic P, Weaver L, Seabury SA (2013) Predicting new diagnoses of HIV infection using internet search engine data. Clin Infect Dis, 56:1352-1353.
  • Kim K, Kim J, Jung S, Kim HW, Kim HS, Son E et al. (2025) Global prevalence of seasonal affective disorder by latitude: A systematic review and meta-analysis. J Affect Disord, 390:119807.
  • Knipe D, Gunnell D, Evans H, John A, Fancourt D (2021) Is Google Trends a useful tool for tracking mental and social distress during a public health emergency? a time-series analysis. J Affect Disord, 294:737-744.
  • Kristoufek L, Moat HS, Preis T (2016) Estimating suicide occurrence statistics using Google Trends. EPJ Data Sci, 5:32.
  • Küçükali H (2021) İnfodemiyoloji, dijital epidemiyoloji ve teleepidemiyoloji. Sağlık Düşüncesi ve Tıp Kültürü, 59:40-41.
  • Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google flu: Traps in big data analysis. Science, 343:1203-1205.
  • Lee JY (2020) Search trends preceding increases in suicide: A cross-correlation study of monthly Google search volume and suicide rate using transfer function models. J Affect Disord, 262:155-164.
  • Lin YH, Chiang TW, Lin YL (2020) Increased internet searches for insomnia as a sensitive indicator for global mental health during the COVID-19 pandemic: Multinational longitudinal study. J Med Internet Res, 22:e22181.
  • Mavragani A, Ochoa G (2019) Google Trends in infodemiology and infoveillance: Methodology framework. JMIR Public Health Surveill, 5:e13439.
  • McCarthy MJ (2010) Internet monitoring of suicide risk in the population. J Affect Disord, 122:277-279.
  • Moccia M, Palladino R, Falco A, Saccà F (2016) Google Trends: New evidence for seasonality of multiple sclerosis. J Neurol Neurosurg Psychiatry, 87:1028-1029.
  • Onur B, Demirtaş HB, Gülmez A (2024) Sağlık trendlerinin belirlenmesinde dijital platformlardan elde edilen verilerin rolü. Journal of Medical Sciences, 5:178-179.
  • Park HA, Jung H, On J, Park SK, Kang H (2018) Digital intervention to recognise and manage early warning signs of relapse in schizophrenia (EMPOWER). Healthc Inform Res, 24:253-262.
  • Rapuru R, Vellapandian C (2025) Exploring infodemiology: Unraveling the intricate relationships among stress, headaches, migraines, and suicide through Google Trends analysis. Front Big Data, 7:1365417.
  • Sahoo S, Sahoo S (2022) An infodemiological study of worldwide Google search volumes for major depressive disorder and persistent depressive disorder. J Affect Disord Rep, 7:100277.
  • Sak FG, Uslu E (2023) Google trend verileri kapsamında infodemiyolojik bir çalışma: Şizofreniye ilişkin bilgi arama eğilimi. Abant Sağlık Bilimleri ve Teknolojileri Dergisi, 3:23-31.
  • Samaras L, García-Barriocanal E, Sicilia MA (2012) Syndromic surveillance models using web data: The case of scarlet fever in the UK. Inform Health Soc Care, 37:106-124.
  • Sisask M, Värnik A (2012) Media roles in suicide prevention: A systematic review. Int J Environ Res Public Health, 9:123-138.
  • Soreni N, Cameron DH, Streiner DL, Rowa K, McCabe RE (2019) Seasonality patterns of Internet searches on mental health: Exploratory infodemiology study. JMIR Ment Health, 6:e12974.
  • Şevik AE, Özcan H, Uysal E (2012) İntihar girişimlerinin incelenmesi: Risk faktörleri ve takip. Klinik Psikiyatri Dergisi, 15:218-225.
  • Tabur A, Sönmez FT (2024) Turkish suicide patterns: Longitudinal analysis of suicide trends in Türkiye (2000-2022). Medicine Science, 13:911-920.
  • Tana JC, Kettunen J, Eirola E, Paakkonen H (2018) Diurnal variations of depression-related health information seeking: Case study in Finland using Google Trends data. JMIR Ment Health, 5:e43.
  • Tran US, Andel R, Niederkrotenthaler T, Till B, Ajdacic-Gross V, Voracek M et al. (2017) Low validity of Google Trends for behavioral forecasting of national suicide rates. PLoS One, 12:e0183149
  • TÜİK (2025) Türkiye İstatistik Kurumu intihar istatistikleri. https://data.tuik.gov.tr/Search/Search?text=intihar&dil=1 (Accessed 02.10.2025).
  • UNDP (2022) Human Development Report 2022: Uncertain Times, Unsettled Lives-Shaping Our Future in a Transforming World. New York, United Nations Development Programme.
  • WHO (2025) Suicide Worldwide in 2025: Global Health Estimates. Geneva, World Health Organization.
  • Yang AC, Tsai SJ, Huang NE, Peng CK (2011) Association of internet search trends with suicide death in Taipei City, Taiwan, 2004-2009. J Affect Disord, 132:179-184.
  • Yaşa H (2024) Internet haber siteleriyle ilişkili kullanıcı arama sorgularının keşfi: Google Trends. Ordu Univ Sosyal Bil Enst Sosyal Bil Arastirmalari Derg, 14:1386-1403.
  • Yıldırım MS, Akçan R, Gül NNA (2024) University student suicides in Türkiye: Insights from two decades of media reports. Health Sciences Quarterly, 4:305-315.
  • Zheng X, Wang Z, Guo J, Xu Z, Zhang Z (2025) Diverse behavior clustering of students on campus with macroscopic multi-source digital data. Sci Rep, 15:15763.
There are 50 citations in total.

Details

Primary Language English
Subjects Psychiatry
Journal Section Research
Authors

Ali Ceylan 0009-0003-2742-0603

Pınar Çiçekoğlu Öztürk 0000-0003-3738-7248

Early Pub Date October 11, 2025
Publication Date October 30, 2025
Submission Date August 6, 2025
Acceptance Date October 11, 2025
Published in Issue Year 2025 Volume: 17 Issue: Supplement 1

Cite

AMA Ceylan A, Çiçekoğlu Öztürk P. Digital Search Trends on Suicide in Türkiye: An Infodemiological Study. Psikiyatride Güncel Yaklaşımlar - Current Approaches in Psychiatry. October 2025;17(Supplement 1):345-353. doi:10.18863/pgy.1758891

Creative Commons License
Psikiyatride Güncel Yaklaşımlar - Current Approaches in Psychiatry is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.