Research Article
BibTex RIS Cite

Exploring the Synthesis of Nanoemulsions and Assessing Their Antimicrobial Effects

Year 2024, Volume: 4 Issue: 2, 51 - 59, 23.04.2024

Abstract

Objective: This review investigates the synthesis of nanoemulsions utilizing prepared essential oils and evaluates their antimicrobial effects. Nanoemulsions, characterized by their small droplet size and enhanced stability, offer promising applications in various industries, including pharmaceuticals and cosmetics, due to their potent antimicrobial properties.

Methods: The synthesis process involves the preparation of essential oils through extraction methods, followed by their incorporation into nanoemulsion formulations using appropriate surfactants and homogenization techniques. The resulting nanoemulsions are then subjected to rigorous antimicrobial testing against a spectrum of microorganisms, employing standardized assays to assess their efficacy.

Results: The findings highlight the significant antimicrobial potential of these essential oil-based nanoemulsions, demonstrating their effectiveness against a variety of bacterial and fungal strains. Furthermore, the elucidation of the underlying mechanisms governing their antimicrobial activity is explored, providing valuable insights into their mode of action.

Conclusion: This study contributes to advancing the understanding of nanoemulsion synthesis using prepared essential oils and underscores their promising role as effective antimicrobial agents in diverse applications.

References

  • 1. Maurya A, Singh VK, Das S, et al. Essential oil nanoemulsion as eco-friendly and safe preservative: Bioefficacy against microbial food deterioration and toxin secretion, mode of action, and future opportunities. Frontiers in Microbiology. 2021;12:751062. [CrossRef]
  • 2. Arianto A, Cella G, Bangun H. Preparation and evaluation of sunscreen nanoemulsions with synergistic efficacy on SPF by combination of soybean oil, avobenzone, and octyl methoxycinnamate. Open Access Macedonian Journal of Medical Sciences. 2019;7(17):2751. [CrossRef]
  • 3. Lu W-C, Huang D-W, Wang C-C, et al. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of Food and Drug Analysis. 2018;26(1):82-89. [CrossRef]
  • 4. Mehmood T, Ahmed A, Ahmad Z, et al. Physicochemical Characteristics of Mixed Surfactant-Stabilized l-Ascorbic Acid Nanoemulsions during Storage. Langmuir. 2022;38(31):9500-9506. [CrossRef]
  • 5. Yang M, Gu Y, Yang D, Tang X, Liu J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. Journal of Nanobiotechnology. 2017;15:1-15. [CrossRef]
  • 6. Fofaria NM, Qhattal HSS, Liu X, Srivastava SK. Nanoemulsion formulations for anti-cancer agent piplartine—Characterization, toxicological, pharmacokinetics and efficacy studies. International Journal of Pharmaceutics. 2016;498(1-2):12-22. [CrossRef]
  • 7. Liao W, Liu Z, Zhang T, et al. Enhancement of anti-inflammatory properties of nobiletin in macrophages by a nano-emulsion preparation. Journal of Agricultural and Food Chemistry. 2018;66(1):91-98. [CrossRef]
  • 8. Su R, Fan W, Yu Q, et al. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. 2017;8(24):38214. [CrossRef]
  • 9. Alam P, Shakeel F, Anwer MK, Foudah AI, Alqarni MH. Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. Journal of Oleo science. 2018;67(8):957-968. [CrossRef]
  • 10. Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of Agricultural and Food Chemistry. 2012;60(21):5373-5379. [CrossRef]
  • 11. Gupta A, Eral HB, Hatton TA, Doyle PS. Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter. 2016;12(5):1452-1458. [CrossRef]
  • 12. Liu Q, Huang H, Chen H, Lin J, Wang Q. Food-grade nanoemulsions: preparation, stability and application in encapsulation of bioactive compounds. Molecules. 2019;24(23):4242. [CrossRef]
  • 13. Khezri S, Karimian S, Yousefi E, Es‐haghi A. Evaluation of the biological activity of nanoemulsions fabricated by walnut oil (Juglans regia L.). Micro & Nano Letters. 2023;18(4):e12161. [CrossRef]
  • 14. Vinaya KN, John AM, Mangsatabam M, Philip MA. Ultrasound-assisted synthesis and characterization of sesame oil based nanoemulsion. IOP Publishing; 2021:012085. [CrossRef]
  • 15. Irranca SM, Schejtman SDG, Rosso AP, Coronado EA, Martinelli M. Hybrid nanogels by direct mixing of chitosan, tannic acid and magnetite nanoparticles: processes involved in their formation and potential catalytic properties. Soft Matter. 2023;19(43):8378-8385. [CrossRef]
  • 16. Prekajski M, Mirković M, Todorović B, et al. Ouzo effect—New simple nanoemulsion method for synthesis of strontium hydroxyapatite nanospheres. Journal of the European Ceramic Society. 2016;36(5):1293-1298. [CrossRef]
  • 17. Ostertag F, Weiss J, McClements DJ. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science. 2012;388(1):95-102. [CrossRef]
  • 18. Sarkar A, Roy S, Bhatia P, Jaiswal A. Quaternary ammonium substituted dextrin‐based biocompatible cationic nanoparticles with ultrahigh pH stability for drug delivery. Journal of Applied Polymer Science. 2023;140(11):e53626. [CrossRef]
  • 19. Wang L, Guan X, Zheng C, Wang N, Lu H, Huang Z. New low-energy method for nanoemulsion formation: pH regulation based on fatty acid/amine complexes. Langmuir. 2020;36(34):10082-10090. [CrossRef]
  • 20. Badruddoza AZM, Gupta A, Myerson AS, Trout BL, Doyle PS. Low energy nanoemulsions as templates for the formulation of hydrophobic drugs. Advanced Therapeutics. 2018;1(1):1700020. [CrossRef]
  • 21. Pandey S, Sharma K, Gundabala V. Development of a Lemongrass/Silver Nanocomposite for Controlling a Foodborne Pathogen-Escherichia coli. ACS Food Science & Technology. 2022;2(12):1850-1861. [CrossRef]
  • 22. Van Dat D, Van Cuong N, Le PHA, Anh TTL, Viet PT, Huong NTL. Orange peel essential oil nanoemulsions supported by nanosilver for antibacterial application. Indonesian Journal of Chemistry. 2020;20(2):430-439. [CrossRef]
  • 23. Nweze E, Mukherjee P, Ghannoum M. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. Journal of Clinical Microbiology. 2010;48(10):3750-3752. [CrossRef]
  • 24. Sanla‐Ead N, Jangchud A, Chonhenchob V, Suppakul P. Antimicrobial Activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose‐based packaging films. Packaging Technology and Science. 2012;25(1):7-17. [CrossRef]
  • 25. El-bendary HM, Zaki AR, El-Ela FIA. Characterization and in-vivo toxicological evaluation of imidacloprid nanoemulsion in rats. World Journal of Biology and Biotechnology. 2021;6(1):25-31. [CrossRef]
  • 26. Lalpuria M, Karwa V, Anantheswaran R, Floros J. Modified agar diffusion bioassay for better quantification of Nisaplin®. Journal of Applied Microbiology. 2013;114(3):663-671. [CrossRef]
  • 27. Gasu EN, Ahor HS, Borquaye LS. Peptide extract from Olivancillaria hiatula exhibits broad-spectrum antibacterial activity. BioMed Research International. 2018;2018. [CrossRef]
  • 28. Chiu C-T, Lai C-H, Huang Y-H, Yang C-H, Lin J-N. Comparative analysis of gradient diffusion and disk diffusion with agar dilution for susceptibility testing of Elizabethkingia anophelis. Antibiotics. 2021;10(4):450. [CrossRef]
  • 29. Levison ME. Microbiological agar diffusion assay for metronidazole concentrations in serum. Antimicrobial Agents and Chemotherapy. 1974;5(5):466-468. [CrossRef]
  • 30. Notten F, Koek-Van Oosten A, Mikx F. Capillary agar diffusion assay for measuring metronidazole in human gingival crevice fluid. Antimicrobial Agents and Chemotherapy. 1982;21(5):836-837. [CrossRef]
  • 31. Fujihara M, Nishiyama S, Hasegawa S. Effects of agars on determination of potency of polymyxin B sulfate by the agar plate diffusion method. Antimicrobial Agents and Chemotherapy. 1994;38(11):2665-2667. [CrossRef]
  • 32. Donaldson JR, Warner SL, Cates RG, Gary Young D. Assessment of antimicrobial activity of fourteen essential oils when using dilution and diffusion methods. Pharmaceutical Biology. 2005;43(8):687-695. [CrossRef]
  • 33. Salina EG, Ekins S, Makarov VA. A rapid method for estimation of the efficacy of potential antimicrobials in humans and animals by agar diffusion assay. Chemical Biology & Drug Design. 2019;93(6):1021-1025. [CrossRef]
  • 34. Ortiz-Padilla M, Portillo-Calderón I, Velázquez-Escudero A, et al. Effect of glycerol on fosfomycin activity against Escherichia coli. Antibiotics. 2022;11(11):1612. [CrossRef]
  • 35. Hemmila MR, Mattar A, Taddonio MA, et al. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery. 2010;148(3):499-509. [CrossRef]
  • 36. Karthikeyan R, Amaechi BT, Rawls HR, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Archives of Oral Biology. 2011;56(5):437-445. [CrossRef]
  • 37. Moustafa H, Nasr HE, Youssef AM. Development of antibacterial carboxymethyl cellulose/quaternized starch bionanocomposites based on cinnamon essential oil nanoemulsion for wound healing applications. Biomass Conversion and Biorefinery. 2022:1-13. [CrossRef]
  • 38. Das AK, Nanda PK, Bandyopadhyay S, Banerjee R, et al. Application of nanoemulsion‐based approaches for improving the quality and safety of muscle foods: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety. 2020;19(5):2677-2700. [CrossRef]
  • 39. Pilong P, Chuesiang P, Mishra DK, Siripatrawan U. Characteristics and antimicrobial activity of microfluidized clove essential oil nanoemulsion optimized using response surface methodology. Journal of Food Processing and Preservation. 2022;46(12):e16886. [CrossRef]
  • 40. Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Frontiers in Sustainable Food Systems. 2019;3:95. [CrossRef]
  • 41. Lucia A, Guzmán E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Advances in Colloid and Interface Science. 2021;287:102330. [CrossRef]
  • 42. Lee M-J, Kim M-J, Kwon J-S, Lee S-B, Kim K-M. Cytotoxicity of light-cured dental materials according to different sample preparation methods. Materials. 2017;10(3):288. [CrossRef]
  • 43. Balpınar Ö, Nadaroğlu H, Hacımüftüoğlu A. Green synthesis, characterization of melatonin-like drug bioconjugated CoS quantum dots and its antiproliferative effect on different cancer cells. Molecular Biology Reports. 2023;50(11):9143-9151. [CrossRef]
  • 44. Enayatifard R, Akbari J, Babaei A, Rostamkalaei SS, et al. Anti-microbial potential of nano-emulsion form of essential oil obtained from aerial parts of Origanum vulgare L. as food additive. Advanced Pharmaceutical Bulletin. 2021;11(2):327. [CrossRef]
  • 45. Horstmann Risso N, Ottonelli Stopiglia CD, Oliveira MT, et al. Chlorhexidine nanoemulsion: a new antiseptic formulation. International Journal of Nanomedicine. 2020:6935-6944. [CrossRef]
  • 46. Syed UT, Leonardo Is, Lahoz R, et al. Microengineered membranes for sustainable production of hydrophobic deep eutectic solvent-based nanoemulsions by membrane emulsification for enhanced antimicrobial activity. ACS Sustainable Chemistry & Engineering. 2020;8(44):16526-16536. [CrossRef]
  • 47. Wang G. Structural biology of antimicrobial peptides by NMR spectroscopy. Current Organic Chemistry. 2006;10(5):569-581. [CrossRef]
  • 48. Neves MA, Ung P, Uemura K, et al. Antimicrobial oil-in-water nanoemulsions: Synergistic effect of nisin and carvacrol against Bacillus subtilis. J Food Sci Eng. 2016;6:63-74. [CrossRef]
  • 49. Pathania R, Kaushik R, Khan MA. Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal. 2018;6(3):626-643. [CrossRef]
  • 50. Saini A, Panesar PS, Dilbaghi N, Prasad M, Bera MB. Lutein extract‐loaded nanoemulsions: Preparation, characterization, and application in dairy product. Journal of Food Processing and Preservation. 2022;46(11):e17082. [CrossRef]
  • 51. Ahmad I, Al‐dolaimy F, Kzar MH, et al. Microfluidic‐based nanoemulsion of Ocimum basilicum extract: Constituents, stability, characterization, and potential biomedical applications for improved antimicrobial and anticancer properties. Microscopy Research and Technique. 2024;87(3):411-423. [CrossRef]
  • 52. Tsitlakidou P, Tasopoulos N, Chatzopoulou P, Mourtzinos I. Current status, technology, regulation and future perspectives of essential oils usage in the food and drink industry. Journal of the Science of Food and Agriculture. 2023;103(14):6727-6751. [CrossRef]
  • 53. Rahman MM, Kotturi H, Nikfarjam S, Bhargava K, et al. Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. Membranes. 2024;14(2):36. [CrossRef]
Year 2024, Volume: 4 Issue: 2, 51 - 59, 23.04.2024

Abstract

References

  • 1. Maurya A, Singh VK, Das S, et al. Essential oil nanoemulsion as eco-friendly and safe preservative: Bioefficacy against microbial food deterioration and toxin secretion, mode of action, and future opportunities. Frontiers in Microbiology. 2021;12:751062. [CrossRef]
  • 2. Arianto A, Cella G, Bangun H. Preparation and evaluation of sunscreen nanoemulsions with synergistic efficacy on SPF by combination of soybean oil, avobenzone, and octyl methoxycinnamate. Open Access Macedonian Journal of Medical Sciences. 2019;7(17):2751. [CrossRef]
  • 3. Lu W-C, Huang D-W, Wang C-C, et al. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of Food and Drug Analysis. 2018;26(1):82-89. [CrossRef]
  • 4. Mehmood T, Ahmed A, Ahmad Z, et al. Physicochemical Characteristics of Mixed Surfactant-Stabilized l-Ascorbic Acid Nanoemulsions during Storage. Langmuir. 2022;38(31):9500-9506. [CrossRef]
  • 5. Yang M, Gu Y, Yang D, Tang X, Liu J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. Journal of Nanobiotechnology. 2017;15:1-15. [CrossRef]
  • 6. Fofaria NM, Qhattal HSS, Liu X, Srivastava SK. Nanoemulsion formulations for anti-cancer agent piplartine—Characterization, toxicological, pharmacokinetics and efficacy studies. International Journal of Pharmaceutics. 2016;498(1-2):12-22. [CrossRef]
  • 7. Liao W, Liu Z, Zhang T, et al. Enhancement of anti-inflammatory properties of nobiletin in macrophages by a nano-emulsion preparation. Journal of Agricultural and Food Chemistry. 2018;66(1):91-98. [CrossRef]
  • 8. Su R, Fan W, Yu Q, et al. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. 2017;8(24):38214. [CrossRef]
  • 9. Alam P, Shakeel F, Anwer MK, Foudah AI, Alqarni MH. Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. Journal of Oleo science. 2018;67(8):957-968. [CrossRef]
  • 10. Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of Agricultural and Food Chemistry. 2012;60(21):5373-5379. [CrossRef]
  • 11. Gupta A, Eral HB, Hatton TA, Doyle PS. Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter. 2016;12(5):1452-1458. [CrossRef]
  • 12. Liu Q, Huang H, Chen H, Lin J, Wang Q. Food-grade nanoemulsions: preparation, stability and application in encapsulation of bioactive compounds. Molecules. 2019;24(23):4242. [CrossRef]
  • 13. Khezri S, Karimian S, Yousefi E, Es‐haghi A. Evaluation of the biological activity of nanoemulsions fabricated by walnut oil (Juglans regia L.). Micro & Nano Letters. 2023;18(4):e12161. [CrossRef]
  • 14. Vinaya KN, John AM, Mangsatabam M, Philip MA. Ultrasound-assisted synthesis and characterization of sesame oil based nanoemulsion. IOP Publishing; 2021:012085. [CrossRef]
  • 15. Irranca SM, Schejtman SDG, Rosso AP, Coronado EA, Martinelli M. Hybrid nanogels by direct mixing of chitosan, tannic acid and magnetite nanoparticles: processes involved in their formation and potential catalytic properties. Soft Matter. 2023;19(43):8378-8385. [CrossRef]
  • 16. Prekajski M, Mirković M, Todorović B, et al. Ouzo effect—New simple nanoemulsion method for synthesis of strontium hydroxyapatite nanospheres. Journal of the European Ceramic Society. 2016;36(5):1293-1298. [CrossRef]
  • 17. Ostertag F, Weiss J, McClements DJ. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science. 2012;388(1):95-102. [CrossRef]
  • 18. Sarkar A, Roy S, Bhatia P, Jaiswal A. Quaternary ammonium substituted dextrin‐based biocompatible cationic nanoparticles with ultrahigh pH stability for drug delivery. Journal of Applied Polymer Science. 2023;140(11):e53626. [CrossRef]
  • 19. Wang L, Guan X, Zheng C, Wang N, Lu H, Huang Z. New low-energy method for nanoemulsion formation: pH regulation based on fatty acid/amine complexes. Langmuir. 2020;36(34):10082-10090. [CrossRef]
  • 20. Badruddoza AZM, Gupta A, Myerson AS, Trout BL, Doyle PS. Low energy nanoemulsions as templates for the formulation of hydrophobic drugs. Advanced Therapeutics. 2018;1(1):1700020. [CrossRef]
  • 21. Pandey S, Sharma K, Gundabala V. Development of a Lemongrass/Silver Nanocomposite for Controlling a Foodborne Pathogen-Escherichia coli. ACS Food Science & Technology. 2022;2(12):1850-1861. [CrossRef]
  • 22. Van Dat D, Van Cuong N, Le PHA, Anh TTL, Viet PT, Huong NTL. Orange peel essential oil nanoemulsions supported by nanosilver for antibacterial application. Indonesian Journal of Chemistry. 2020;20(2):430-439. [CrossRef]
  • 23. Nweze E, Mukherjee P, Ghannoum M. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. Journal of Clinical Microbiology. 2010;48(10):3750-3752. [CrossRef]
  • 24. Sanla‐Ead N, Jangchud A, Chonhenchob V, Suppakul P. Antimicrobial Activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose‐based packaging films. Packaging Technology and Science. 2012;25(1):7-17. [CrossRef]
  • 25. El-bendary HM, Zaki AR, El-Ela FIA. Characterization and in-vivo toxicological evaluation of imidacloprid nanoemulsion in rats. World Journal of Biology and Biotechnology. 2021;6(1):25-31. [CrossRef]
  • 26. Lalpuria M, Karwa V, Anantheswaran R, Floros J. Modified agar diffusion bioassay for better quantification of Nisaplin®. Journal of Applied Microbiology. 2013;114(3):663-671. [CrossRef]
  • 27. Gasu EN, Ahor HS, Borquaye LS. Peptide extract from Olivancillaria hiatula exhibits broad-spectrum antibacterial activity. BioMed Research International. 2018;2018. [CrossRef]
  • 28. Chiu C-T, Lai C-H, Huang Y-H, Yang C-H, Lin J-N. Comparative analysis of gradient diffusion and disk diffusion with agar dilution for susceptibility testing of Elizabethkingia anophelis. Antibiotics. 2021;10(4):450. [CrossRef]
  • 29. Levison ME. Microbiological agar diffusion assay for metronidazole concentrations in serum. Antimicrobial Agents and Chemotherapy. 1974;5(5):466-468. [CrossRef]
  • 30. Notten F, Koek-Van Oosten A, Mikx F. Capillary agar diffusion assay for measuring metronidazole in human gingival crevice fluid. Antimicrobial Agents and Chemotherapy. 1982;21(5):836-837. [CrossRef]
  • 31. Fujihara M, Nishiyama S, Hasegawa S. Effects of agars on determination of potency of polymyxin B sulfate by the agar plate diffusion method. Antimicrobial Agents and Chemotherapy. 1994;38(11):2665-2667. [CrossRef]
  • 32. Donaldson JR, Warner SL, Cates RG, Gary Young D. Assessment of antimicrobial activity of fourteen essential oils when using dilution and diffusion methods. Pharmaceutical Biology. 2005;43(8):687-695. [CrossRef]
  • 33. Salina EG, Ekins S, Makarov VA. A rapid method for estimation of the efficacy of potential antimicrobials in humans and animals by agar diffusion assay. Chemical Biology & Drug Design. 2019;93(6):1021-1025. [CrossRef]
  • 34. Ortiz-Padilla M, Portillo-Calderón I, Velázquez-Escudero A, et al. Effect of glycerol on fosfomycin activity against Escherichia coli. Antibiotics. 2022;11(11):1612. [CrossRef]
  • 35. Hemmila MR, Mattar A, Taddonio MA, et al. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery. 2010;148(3):499-509. [CrossRef]
  • 36. Karthikeyan R, Amaechi BT, Rawls HR, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Archives of Oral Biology. 2011;56(5):437-445. [CrossRef]
  • 37. Moustafa H, Nasr HE, Youssef AM. Development of antibacterial carboxymethyl cellulose/quaternized starch bionanocomposites based on cinnamon essential oil nanoemulsion for wound healing applications. Biomass Conversion and Biorefinery. 2022:1-13. [CrossRef]
  • 38. Das AK, Nanda PK, Bandyopadhyay S, Banerjee R, et al. Application of nanoemulsion‐based approaches for improving the quality and safety of muscle foods: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety. 2020;19(5):2677-2700. [CrossRef]
  • 39. Pilong P, Chuesiang P, Mishra DK, Siripatrawan U. Characteristics and antimicrobial activity of microfluidized clove essential oil nanoemulsion optimized using response surface methodology. Journal of Food Processing and Preservation. 2022;46(12):e16886. [CrossRef]
  • 40. Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Frontiers in Sustainable Food Systems. 2019;3:95. [CrossRef]
  • 41. Lucia A, Guzmán E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Advances in Colloid and Interface Science. 2021;287:102330. [CrossRef]
  • 42. Lee M-J, Kim M-J, Kwon J-S, Lee S-B, Kim K-M. Cytotoxicity of light-cured dental materials according to different sample preparation methods. Materials. 2017;10(3):288. [CrossRef]
  • 43. Balpınar Ö, Nadaroğlu H, Hacımüftüoğlu A. Green synthesis, characterization of melatonin-like drug bioconjugated CoS quantum dots and its antiproliferative effect on different cancer cells. Molecular Biology Reports. 2023;50(11):9143-9151. [CrossRef]
  • 44. Enayatifard R, Akbari J, Babaei A, Rostamkalaei SS, et al. Anti-microbial potential of nano-emulsion form of essential oil obtained from aerial parts of Origanum vulgare L. as food additive. Advanced Pharmaceutical Bulletin. 2021;11(2):327. [CrossRef]
  • 45. Horstmann Risso N, Ottonelli Stopiglia CD, Oliveira MT, et al. Chlorhexidine nanoemulsion: a new antiseptic formulation. International Journal of Nanomedicine. 2020:6935-6944. [CrossRef]
  • 46. Syed UT, Leonardo Is, Lahoz R, et al. Microengineered membranes for sustainable production of hydrophobic deep eutectic solvent-based nanoemulsions by membrane emulsification for enhanced antimicrobial activity. ACS Sustainable Chemistry & Engineering. 2020;8(44):16526-16536. [CrossRef]
  • 47. Wang G. Structural biology of antimicrobial peptides by NMR spectroscopy. Current Organic Chemistry. 2006;10(5):569-581. [CrossRef]
  • 48. Neves MA, Ung P, Uemura K, et al. Antimicrobial oil-in-water nanoemulsions: Synergistic effect of nisin and carvacrol against Bacillus subtilis. J Food Sci Eng. 2016;6:63-74. [CrossRef]
  • 49. Pathania R, Kaushik R, Khan MA. Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal. 2018;6(3):626-643. [CrossRef]
  • 50. Saini A, Panesar PS, Dilbaghi N, Prasad M, Bera MB. Lutein extract‐loaded nanoemulsions: Preparation, characterization, and application in dairy product. Journal of Food Processing and Preservation. 2022;46(11):e17082. [CrossRef]
  • 51. Ahmad I, Al‐dolaimy F, Kzar MH, et al. Microfluidic‐based nanoemulsion of Ocimum basilicum extract: Constituents, stability, characterization, and potential biomedical applications for improved antimicrobial and anticancer properties. Microscopy Research and Technique. 2024;87(3):411-423. [CrossRef]
  • 52. Tsitlakidou P, Tasopoulos N, Chatzopoulou P, Mourtzinos I. Current status, technology, regulation and future perspectives of essential oils usage in the food and drink industry. Journal of the Science of Food and Agriculture. 2023;103(14):6727-6751. [CrossRef]
  • 53. Rahman MM, Kotturi H, Nikfarjam S, Bhargava K, et al. Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. Membranes. 2024;14(2):36. [CrossRef]
There are 53 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Articles
Authors

Hatice Gırgın This is me 0009-0003-8905-2084

Hayrunnisa Nadaroglu 0000-0002-0536-4212

Publication Date April 23, 2024
Submission Date February 16, 2024
Acceptance Date March 14, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

EndNote Gırgın H, Nadaroglu H (April 1, 2024) Exploring the Synthesis of Nanoemulsions and Assessing Their Antimicrobial Effects. Pharmata 4 2 51–59.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929