Research Article
BibTex RIS Cite

Kronik Böbrek Hastalığı Hastalarında PWV Değişimi ile eGFR Değişimi Arasındaki İlişkinin Zaman İçinde İncelenmesi

Year 2025, Volume: 5 Issue: 3, 77 - 82, 26.11.2025
https://doi.org/10.62425/pharmata.1780600

Abstract

Amaç: Bu çalışmanın amacı, kronik böbrek hastalığı (KBH) olan hastalarda arteriyel sertliğin bir ölçüsü olan nabız dalga hızı (PWV) ile böbrek fonksiyonunun bir göstergesi olan tahmini glomerüler filtrasyon hızı (eGFR) arasındaki uzunlamasına ilişkiyi araştırmaktır.
Yöntemler: Renal replasman tedavisi almayan toplam 55 KBH hastası (Evre 3-5) yaklaşık dört yıl boyunca prospektif olarak takip edildi. PWV ve eGFR, başlangıçta ve takip sonunda ölçüldü. Hastalar, eGFR progresyonuna göre stabil ve progresif düşüş olmak üzere iki gruba ayrıldı. Demografik, klinik ve laboratuvar verileri toplandı. PWV (ΔPWV) ve eGFR (ΔeGFR) değişiklikleri arasındaki ilişki analiz edildi.
Sonuçlar: PWV değişiklikleri ile eGFR değişiklikleri arasında anlamlı bir korelasyon bulunmadı (P>.05). Progresif grupta stabil gruba kıyasla eGFR'de anlamlı bir düşüş görülürken (P=.001), ΔPWV gruplar arasında anlamlı bir farklılık göstermedi. Yaş, kan basıncı ve başlangıç ​​PWV gibi değişkenler gruplar arasında anlamlı bir farklılık göstermedi. eGFR ilerlemesi olan hastalarda parathormon ve fosfor seviyeleri daha yüksek, hemoglobin ve albümin seviyeleri ise daha düşüktü.
Sonuç: Dört yıllık takip süresince, KBH hastalarında arteriyel sertlikteki (PWV) değişiklikler, böbrek fonksiyonundaki (eGFR) değişikliklerle anlamlı bir ilişki göstermedi. Korelasyon eksikliği, ayrı patofizyolojik mekanizmaların vasküler sertliği ve böbrek fonksiyonu bozulmasını yönetebileceğini düşündürmektedir. Bu karmaşık etkileşimleri açıklığa kavuşturmak için moleküler düzeyde analizler de dahil olmak üzere daha ileri çalışmalara ihtiyaç vardır.

Ethical Statement

Araştırma Helsinki Bildirgesi İlkeleri'ne uygun olarak yürütülmüştür. Bilgilendirilmiş onam alınmış ve çalışma Sağlık Bilimleri Üniversitesi, Konya Araştırma ve Eğitim Hastanesi Etik Kurulu tarafından kabul edilmiştir. Çalışma protokolü yerel etik kurul tarafından onaylanmıştır (onay no: 48929119/774/28-25).

Supporting Institution

yok

Project Number

1780600

Thanks

-

References

  • 1. Taal MW, Sigrist MK, Fakis A, Fluck RJ, McIntyre CW. Markers of arterial stiffness are risk factors for progression to end-stage renal disease among patients with chronic kidney disease stages 4 and 5. Nephron Clinical Practice. 2008, 107: c177-c181. [CrossRef]
  • 2. Briet M, Collin C, Karras A, Laurent S, Bozec E, Jacquot C, Stengel B, Houillier P, Froissart M, Boutouyrie P. Arterial remodeling associates with CKD progression. J Am Soc Nephrol. 2011, 22: 967-974. [CrossRef]
  • 3. Wang M-C, Tsai W-C, Chen J-Y, Huang J-J. Stepwise increase in arterial stiffness corresponding with the stages of chronic kidney disease. Am J Kidney Dis. 2005;45:494-501. [CrossRef]
  • 4. Lioufas N, Hawley CM, Cameron JD, Toussaint ND. Chronic kidney disease and pulse wave velocity: a narrative review. Int J Hypertension. 2019:9189362. [CrossRef]
  • 5. Ford ML, Tomlinson LA, Chapman TP, Rajkumar C, Holt SG. Aortic stiffness is independently associated with rate of renal function decline in chronic kidney disease stages 3 and 4. Hypertension. 2010; 55:1110-1115. [CrossRef]
  • 6. Van Varik BJ, Vossen LM, Rennenberg RJ,et al. Arterial stiffness and decline of renal function in a primary care population. Hypertension Res. 2017;40:73-78. [CrossRef]
  • 7. Sedaghat S, Mattace-Raso FU, Hoorn EJ, et al. Arterial stiffness and decline in kidney function. Clin J Am Soc Nephrol. 2015;10:2190-2197. [CrossRef]
  • 8. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200-204. [CrossRef]
  • 9. RD M. Simplified calculation of body surface area. New Engl J Med. 1987:317:1098. [CrossRef]
  • 10. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Annals Internal Med. 2009;150:604-612. [CrossRef]
  • 11. Afsar B, Elsurer R. The relationship between magnesium and ambulatory blood pressure, augmentation index, pulse wave velocity, total peripheral resistance, and cardiac output in essential hypertensive patients. J Am Soc Hypertension. 2014;8:28-35. [CrossRef]
  • 12. Weiss W, Gohlisch C, Harsch-Gladisch C, Tölle M, Zidek W, van der Giet M. Oscillometric estimation of central blood pressure: validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Pressure Monitoring. 2012;17:128-131. [CrossRef]
  • 13. Meani P, Maloberti A, Sormani P, et al. Determinants of carotid-femoral pulse wave velocity progression in hypertensive patients over a 3.7 years follow-up. Blood Pressure. 2018;27:32-40. [CrossRef]
  • 14. Wang Y, Yuan Y, Gao W-H, et al. Predictors for progressions of brachial–ankle pulse wave velocity and carotid intima–media thickness over a 12-year follow-up: Hanzhong Adolescent Hypertension Study. J Hypertension. 2019;37:1167-1175. [CrossRef]
  • 15. Benetos A, Adamopoulos C, Bureau J-M, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105:1202-1207. [CrossRef]
  • 16. AlGhatrif M, Strait JB, Morrell CH, et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension, 2013, 62: 934-941. [CrossRef]
  • 17. Ait-Oufella H, Collin C, Bozec E, et al. Long-term reduction in aortic stiffness: a 5.3-year follow-up in routine clinical practice. Journal of Hypertension, 2010;28:2336-2341. [CrossRef]
  • 18. Truscello L ND, Sabaratnam V, Bonny O, et al. Blood pressure and vascular determinants of glomerular filtration rate decline in diabetic kidney disease. Front Cardiovasc Med. 2023;10:1230227. [CrossRef]
  • 19. Heleniak Z IS, Dębska-Ślizień A, Budde K, Halleck F. . Kidney graft function and arterial stiffness in renal transplant recipients. Acta Biochim Pol. 2021;68(2):331-339. [CrossRef]
  • 20. Loutradis C, Papagianni A, Ekart R, et al. Excess volume removal following lung ultrasound evaluation decreases central blood pressure and pulse wave velocity in hemodialysis patients: a LUST sub-study. J Nephrol. 2020;33:1289-1300. [CrossRef]
  • 21. Kim CS, Kim HY, Kang YU, et al. Association of pulse wave velocity and pulse pressure with decline in kidney function. J Clin Hypertension. 2014;16:372-377. [CrossRef]
  • 22. Lilitkarntakul P, Dhaun N, Melville V, Bet al. Blood pressure and not uraemia is the major determinant of arterial stiffness and endothelial dysfunction in patients with chronic kidney disease and minimal co-morbidity. Atherosclerosis, 2011;216:217-225. [CrossRef]
  • 23. Chue CD, Edwards NC, Davis LJ, Steeds RP, Townend JN, Ferro CJ. Serum phosphate but not pulse wave velocity predicts decline in renal function in patients with early chronic kidney disease. Nephrology Dialysis Transplantation. 2011;26::2576-2582. [CrossRef]
  • 24. Coresh J SE, Stevens LA, Manzi J, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038-2047. [CrossRef]
  • 25. Myles W. Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol. 2010;21(9):1427-1435. [CrossRef]

Examining the Relationship Between PWV Change and eGFR Change Over Time in Chronic Kidney Disease Patients

Year 2025, Volume: 5 Issue: 3, 77 - 82, 26.11.2025
https://doi.org/10.62425/pharmata.1780600

Abstract

Objective: This study aimed to investigate the longitudinal relationship between pulse wave velocity (PWV), a measure of arterial stiffness, and estimated glomerular filtration rate (eGFR), an indicator of renal function, in patients with chronic kidney disease (CKD).
Methods: A total of 55 CKD patients (Stage 3–5), not on renal replacement therapy, were prospectively followed for approximately four years. PWV and eGFR were measured at baseline and at the end of follow-up. Patients were divided into two groups based on eGFR progression: stable and progressive decline. Demographic, clinical, and laboratory data were collected. The association between changes in PWV (ΔPWV) and eGFR (ΔeGFR) was analyzed.
Results: No significant correlation was found between changes in PWV and changes in eGFR (P>.05). While there was a significant decline in eGFR in the progressive group compared to the stable group (P=.001), ΔPWV did not significantly differ between the groups. Variables such as age, blood pressure, and baseline PWV were not significantly different between groups. Parathormone and phosphorus levels were higher, and hemoglobin and albumin levels were lower in patients with eGFR progression.
Conclusion: Over a four-year follow-up, changes in arterial stiffness (PWV) were not significantly associated with changes in renal function (eGFR) among CKD patients. The lack of correlation suggests that separate pathophysiological mechanisms may govern vascular stiffness and kidney function deterioration. Further studies, including molecular-level analyses, are required to clarify these complex interactions.

Ethical Statement

This study has been approved by the Health Sciences University Konya City Hospital Ethics Committee. (Date: 01.08.2019, Approval No. 48929119/774/28-25).

Supporting Institution

yok

Project Number

1780600

Thanks

-

References

  • 1. Taal MW, Sigrist MK, Fakis A, Fluck RJ, McIntyre CW. Markers of arterial stiffness are risk factors for progression to end-stage renal disease among patients with chronic kidney disease stages 4 and 5. Nephron Clinical Practice. 2008, 107: c177-c181. [CrossRef]
  • 2. Briet M, Collin C, Karras A, Laurent S, Bozec E, Jacquot C, Stengel B, Houillier P, Froissart M, Boutouyrie P. Arterial remodeling associates with CKD progression. J Am Soc Nephrol. 2011, 22: 967-974. [CrossRef]
  • 3. Wang M-C, Tsai W-C, Chen J-Y, Huang J-J. Stepwise increase in arterial stiffness corresponding with the stages of chronic kidney disease. Am J Kidney Dis. 2005;45:494-501. [CrossRef]
  • 4. Lioufas N, Hawley CM, Cameron JD, Toussaint ND. Chronic kidney disease and pulse wave velocity: a narrative review. Int J Hypertension. 2019:9189362. [CrossRef]
  • 5. Ford ML, Tomlinson LA, Chapman TP, Rajkumar C, Holt SG. Aortic stiffness is independently associated with rate of renal function decline in chronic kidney disease stages 3 and 4. Hypertension. 2010; 55:1110-1115. [CrossRef]
  • 6. Van Varik BJ, Vossen LM, Rennenberg RJ,et al. Arterial stiffness and decline of renal function in a primary care population. Hypertension Res. 2017;40:73-78. [CrossRef]
  • 7. Sedaghat S, Mattace-Raso FU, Hoorn EJ, et al. Arterial stiffness and decline in kidney function. Clin J Am Soc Nephrol. 2015;10:2190-2197. [CrossRef]
  • 8. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200-204. [CrossRef]
  • 9. RD M. Simplified calculation of body surface area. New Engl J Med. 1987:317:1098. [CrossRef]
  • 10. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Annals Internal Med. 2009;150:604-612. [CrossRef]
  • 11. Afsar B, Elsurer R. The relationship between magnesium and ambulatory blood pressure, augmentation index, pulse wave velocity, total peripheral resistance, and cardiac output in essential hypertensive patients. J Am Soc Hypertension. 2014;8:28-35. [CrossRef]
  • 12. Weiss W, Gohlisch C, Harsch-Gladisch C, Tölle M, Zidek W, van der Giet M. Oscillometric estimation of central blood pressure: validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Pressure Monitoring. 2012;17:128-131. [CrossRef]
  • 13. Meani P, Maloberti A, Sormani P, et al. Determinants of carotid-femoral pulse wave velocity progression in hypertensive patients over a 3.7 years follow-up. Blood Pressure. 2018;27:32-40. [CrossRef]
  • 14. Wang Y, Yuan Y, Gao W-H, et al. Predictors for progressions of brachial–ankle pulse wave velocity and carotid intima–media thickness over a 12-year follow-up: Hanzhong Adolescent Hypertension Study. J Hypertension. 2019;37:1167-1175. [CrossRef]
  • 15. Benetos A, Adamopoulos C, Bureau J-M, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105:1202-1207. [CrossRef]
  • 16. AlGhatrif M, Strait JB, Morrell CH, et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension, 2013, 62: 934-941. [CrossRef]
  • 17. Ait-Oufella H, Collin C, Bozec E, et al. Long-term reduction in aortic stiffness: a 5.3-year follow-up in routine clinical practice. Journal of Hypertension, 2010;28:2336-2341. [CrossRef]
  • 18. Truscello L ND, Sabaratnam V, Bonny O, et al. Blood pressure and vascular determinants of glomerular filtration rate decline in diabetic kidney disease. Front Cardiovasc Med. 2023;10:1230227. [CrossRef]
  • 19. Heleniak Z IS, Dębska-Ślizień A, Budde K, Halleck F. . Kidney graft function and arterial stiffness in renal transplant recipients. Acta Biochim Pol. 2021;68(2):331-339. [CrossRef]
  • 20. Loutradis C, Papagianni A, Ekart R, et al. Excess volume removal following lung ultrasound evaluation decreases central blood pressure and pulse wave velocity in hemodialysis patients: a LUST sub-study. J Nephrol. 2020;33:1289-1300. [CrossRef]
  • 21. Kim CS, Kim HY, Kang YU, et al. Association of pulse wave velocity and pulse pressure with decline in kidney function. J Clin Hypertension. 2014;16:372-377. [CrossRef]
  • 22. Lilitkarntakul P, Dhaun N, Melville V, Bet al. Blood pressure and not uraemia is the major determinant of arterial stiffness and endothelial dysfunction in patients with chronic kidney disease and minimal co-morbidity. Atherosclerosis, 2011;216:217-225. [CrossRef]
  • 23. Chue CD, Edwards NC, Davis LJ, Steeds RP, Townend JN, Ferro CJ. Serum phosphate but not pulse wave velocity predicts decline in renal function in patients with early chronic kidney disease. Nephrology Dialysis Transplantation. 2011;26::2576-2582. [CrossRef]
  • 24. Coresh J SE, Stevens LA, Manzi J, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038-2047. [CrossRef]
  • 25. Myles W. Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol. 2010;21(9):1427-1435. [CrossRef]
There are 25 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Suleyman Karakose 0000-0003-4680-7435

Edip Erkuş 0000-0002-7821-8275

İbrahim Güney 0000-0002-1646-2811

Project Number 1780600
Early Pub Date November 26, 2025
Publication Date November 26, 2025
Submission Date September 23, 2025
Acceptance Date November 7, 2025
Published in Issue Year 2025 Volume: 5 Issue: 3

Cite

EndNote Karakose S, Erkuş E, Güney İ (November 1, 2025) Examining the Relationship Between PWV Change and eGFR Change Over Time in Chronic Kidney Disease Patients. Pharmata 5 3 77–82.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929