Research Article
BibTex RIS Cite

Morchella importuna mantarının Meyve Gövdeleri ve Kültür Miselyal Ekstraktlarının Farmakolojik Değerlendirmesi

Year 2025, Volume: 5 Issue: 3, 65 - 71, 26.11.2025
https://doi.org/10.62425/pharmata.1791405

Abstract

Amaç:
Bu çalışmanın amacı, Türkiye'nin Yalova ilinden izole edilen Morchella importuna M. Kuo, O'Donnell & T.J. Volk 2012 suşunun sporoforları (SSE003-77FB) ve miselyal biyokütlesinden (SSE003-77MC) elde edilen metanolik ekstraktların farmakolojik potansiyelini araştırmak ve karşılaştırmaktır. Temel hedef; toplam fenolik ve flavonoid içeriklerinin yanı sıra antioksidan aktivitelerini değerlendirerek, kültüre alınmış miselyaların doğadan toplanan mantarların sürdürülebilir bir alternatifi olarak biyoteknolojik önemini ortaya koymaktır.

Yöntem:
Sporofor ve miselyal biyokütle örnekleri kurutulup toz haline getirilmiş ve metanol ile ekstrakte edilmiştir. Toplam fenolik içerik (TPC), Folin–Ciocalteu yöntemiyle; toplam flavonoid içerik (TFC) ise alüminyum klorür yöntemiyle tayin edilmiştir. Antioksidan kapasiteleri, DPPH radikal süpürme ve CUPRAC yöntemleriyle analiz edilmiştir. Tüm ölçümler üç tekrar halinde gerçekleştirilmiş ve istatistiksel anlamlılık tek yönlü ANOVA ile değerlendirilmiştir (p < 0.05).

Bulgular:
SSE003-77FB örnekleri, toplam fenolik içerik (1121.79 ± 54.14 mg GAE/kg), flavonoid içerik (1260.06 ± 47.35 mg CE/kg) ve antioksidan kapasite (DPPH: 3033.33 ± 71.84 mg TE/kg; CUPRAC: 1227.89 ± 37.14 mg TE/kg) bakımından SSE003-77MC'ye kıyasla anlamlı derecede daha yüksek değerlere sahipti. Bununla birlikte, miselyal ekstraktlar da önemli düzeyde biyolojik aktivite göstermiştir (TPC: 243.85 ± 41.45 mg GAE/kg; TFC: 715.55 ± 27.62 mg CE/kg; DPPH: 1012.92 ± 99.96 mg TE/kg; CUPRAC: 528.20 ± 13.10 mg TE/kg). Bu durum, kontrollü koşullarda kültüre alınan miselyaların farmasötik formülasyonlar, fonksiyonel gıda üretimi ve gelecekteki biyoteknolojik uygulamalar için sürdürülebilir, standardize edilebilir ve mevsimden bağımsız biyokaynaklar olarak değerlendirilebileceğini göstermektedir.

Sonuç:
Elde edilen bulgular, M. importuna miselyal biyokütlesinin farmakolojik açıdan önemli bir kaynak olduğunu ortaya koymaktadır. İn vitro koşullarda kültürlenmiş mantar miselyaları, tekrar üretilebilir, sürdürülebilir ve mevsimsel kısıtlamalardan bağımsız biyolojik bileşik kaynakları sunarak farmasötik ve nutrasötik uygulamalarda kullanılmak üzere değerli bir alternatif teşkil etmektedir. Bu karşılaştırmalı yaklaşım, kültüre alınmış fungal biyokütlenin, doğadan sporofor toplanmasının yerine geçebilecek potansiyelini vurgulayan yenilikçi bir perspektif sunmaktadır.

Project Number

1791405

Thanks

I would like to thank the Atatürk Horticultural Central Research Institute, and especially Dr. Seda Kayahan, for their valuable contributions and support during the laboratory analysis processes in this study.

References

  • 1. Erol SS, Allı H. Armutlu (Yalova) Yöresinin Ekonomik Değere Sahip Makromantarları. Değerlendirme süreci. Published online August 9, 2024. [CrossRef]
  • 2. Kumar D, Suman S, Jha AK, Singh T, Singh G. Ethnopharmacological, Phytochemical and Pharmacological Uses of Genus Morchella: A Systematic Review. J Res Appl Sci Biotechnol. 2025;4(2):38-44. [CrossRef]
  • 3. Qiaodi SUN, Jiangping Z, Yangyang XIE, Wenjie Y a. N. Recent Progress in Research on Nutrients, Functional Components and Health Benefits of Morchella esculenta. Food Science. 2019;40(5):323. [CrossRef]
  • 4. Haq FU, Imran M, Saleem S, Rafi A, Jamal M. Investigation of Three Morchella Species for Anticancer Activity Against Colon Cancer Cell Lines by UPLC-MS-Based Chemical Analysis. Appl Biochem Biotechnol. 2023;195(1):486-504. [CrossRef]
  • 5. Yang Y, Yang J, Wang H, et al. Analysis of primary metabolites of Morchella fruit bodies and mycelium based on widely targeted metabolomics. Arch Microbiol. 2021;204(1):98. [CrossRef]
  • 6. Wang Z, Wang H, Kang Z, Wu Y, Xing Y, Yang Y. Antioxidant and anti-tumour activity of triterpenoid compounds isolated from Morchella mycelium. Arch Microbiol. 2020;202(7):1677-1685. [CrossRef]
  • 7. Clowez P. Les morilles. Une nouvelle approche mondiale du genre \textitMorchella. Bulletin de la Société Mycologique de France. 2010;126(3-4):199-376. Accessed September 20, 2025. [CrossRef]
  • 8. Loizides M, Bellanger JM, Clowez P, Richard F, Moreau PA. Combined phylogenetic and morphological studies of true morels (Pezizales, Ascomycota) in Cyprus reveal significant diversity, including Morchella arbutiphila and M. disparilis spp. nov. Mycol Progress. 2016;15(4):39. [CrossRef]
  • 9. O’Donnell K, Rooney AP, Mills GL, Kuo M, Weber NS, Rehner SA. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genetics and Biology. 2011;48(3):252-265. [CrossRef]
  • 10. Du XH, Zhao Q, Yang ZL. A review on research advances, issues, and perspectives of morels. Mycology. 2015;6(2):78-85. [CrossRef]
  • 11. Hao H, Zhang J, Wang H, et al. Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna. AMB Express. 2019;9(1):103. [CrossRef]
  • 12. Li L, Ham H, Sung J, Kim Y, Lee HS. Antioxidant Activities of Methanolic Extracts from Four Different Rose Cultivars. Journal of Food and Nutrition Research. 2014;2:69-73. [CrossRef]
  • 13. Baydar NG, Baydar H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products. 2013;41:375-380. [CrossRef]
  • 14. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Composition Analysis. 2006;19(6):669-675. [CrossRef]
  • 15. Karadeniz F, Burdurlu H, Koca N, Soyer Y. Antioxidant Activity of Selected Fruits and Vegetables Grown in Turkey. Turkish Journal of Agriculture and Forestry. 2005;29(4):297-303. [CrossRef]
  • 16. Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970-7981. [CrossRef]
  • 17. Wasser S. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J. 2014;37(6):345. [CrossRef]
  • 18. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. [CrossRef]
  • 19. Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med. 2001;30(6):583-594. [CrossRef]
  • 20. Zhang Z, Shi M, Zheng H, Ren R, Zhang S, Ma X. Structural characterization and biological activities of a new polysaccharide isolated from Morchella Sextelata. Glycoconj J. 2022;39(3):369-380. [CrossRef]
  • 21. Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochemistry. 2005;40(5):1667-1672. [CrossRef]
  • 22. Zhu LW, Zhong JJ, Tang YJ. Multi-fed batch culture integrated with three-stage light irradiation and multiple additions of copper ions for the hyperproduction of ganoderic acid and Ganoderma polysaccharides by the medicinal mushroom Ganoderma lucidum. Process Biochemistry. 2010;45(12):1904-1911. [CrossRef]
  • 23. Fraga I, Coutinho J, Bezerra RM, Dias AA, Marques G, Nunes FM. Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydrate Polymers. 2014;111:936-946. [CrossRef]
  • 24. Nguyen KD, Nguyen CM, Le DA, et al. The mixture of Ganoderma lucidum and Cordyceps militaris: Chemical composition and protective effect against oxidative stress. J Agric Food Res. 2024;15:101045. [CrossRef]

Comparative Evaluation of Fruiting Bodies and Cultured Mycelial Extracts of Morchella importuna for Pharmacological

Year 2025, Volume: 5 Issue: 3, 65 - 71, 26.11.2025
https://doi.org/10.62425/pharmata.1791405

Abstract

Objective:
This study aimed to investigate and compare the pharmacological potential of methanolic extracts from fruiting bodies (SSE003-77FB) and mycelial biomass (SSE003-77MC) of Morchella importuna M. Kuo, O'Donnell & TJ Volk 2012, isolated from Yalova province, Türkiye. The primary goal was to assess their total phenolic and flavonoid content, as well as antioxidant activity, to evaluate the biotechnological relevance of cultured mycelia as a sustainable alternative to wild-harvested mushrooms.
Methods:
Fruiting bodies and mycelial biomass were dried, powdered, and subjected to methanolic extraction. Total phenolic content (TPC) and total flavonoid content (TFC) were quantified using Folin–Ciocalteu and aluminum chloride assays, respectively. Antioxidant potential was assessed via DPPH radical scavenging and CUPRAC assays. All measurements were performed in triplicate, and statistical significance was determined using one-way ANOVA (p < 0.05).
Results:
SSE003-77FB showed significantly higher total phenolic (1121.79 ± 54.14 mg GAE/kg) and flavonoid contents (1260.06 ± 47.35 mg CE/kg), as well as stronger antioxidant capacity (DPPH: 3033.33 ± 71.84 mg TE/kg; CUPRAC: 1227.89 ± 37.14 mg TE/kg) compared with SSE003-77MC. However, mycelial extracts retained substantial bioactivity (TPC: 243.85 ± 41.45 mg GAE/kg; TFC: 715.55 ± 27.62 mg CE/kg; DPPH: 1012.92 ± 99.96 mg TE/kg; CUPRAC: 528.20 ± 13.10 mg TE/kg), supporting their potential as sustainable, standardized, and season-independent bioresources for pharmaceutical formulations, functional food development, and future biotechnological exploitation under controlled cultivation conditions.
Conclusion:
These findings underscore the pharmacological relevance of M. importuna mycelial biomass, suggesting that in vitro cultivation can provide reproducible, sustainable, and season-independent sources of bioactive metabolites for pharmaceutical and nutraceutical. applications. This comparative approach offers novel insights into the valorization of cultured fungal biomass as a viable replacement for fruiting body harvesting.

Project Number

1791405

References

  • 1. Erol SS, Allı H. Armutlu (Yalova) Yöresinin Ekonomik Değere Sahip Makromantarları. Değerlendirme süreci. Published online August 9, 2024. [CrossRef]
  • 2. Kumar D, Suman S, Jha AK, Singh T, Singh G. Ethnopharmacological, Phytochemical and Pharmacological Uses of Genus Morchella: A Systematic Review. J Res Appl Sci Biotechnol. 2025;4(2):38-44. [CrossRef]
  • 3. Qiaodi SUN, Jiangping Z, Yangyang XIE, Wenjie Y a. N. Recent Progress in Research on Nutrients, Functional Components and Health Benefits of Morchella esculenta. Food Science. 2019;40(5):323. [CrossRef]
  • 4. Haq FU, Imran M, Saleem S, Rafi A, Jamal M. Investigation of Three Morchella Species for Anticancer Activity Against Colon Cancer Cell Lines by UPLC-MS-Based Chemical Analysis. Appl Biochem Biotechnol. 2023;195(1):486-504. [CrossRef]
  • 5. Yang Y, Yang J, Wang H, et al. Analysis of primary metabolites of Morchella fruit bodies and mycelium based on widely targeted metabolomics. Arch Microbiol. 2021;204(1):98. [CrossRef]
  • 6. Wang Z, Wang H, Kang Z, Wu Y, Xing Y, Yang Y. Antioxidant and anti-tumour activity of triterpenoid compounds isolated from Morchella mycelium. Arch Microbiol. 2020;202(7):1677-1685. [CrossRef]
  • 7. Clowez P. Les morilles. Une nouvelle approche mondiale du genre \textitMorchella. Bulletin de la Société Mycologique de France. 2010;126(3-4):199-376. Accessed September 20, 2025. [CrossRef]
  • 8. Loizides M, Bellanger JM, Clowez P, Richard F, Moreau PA. Combined phylogenetic and morphological studies of true morels (Pezizales, Ascomycota) in Cyprus reveal significant diversity, including Morchella arbutiphila and M. disparilis spp. nov. Mycol Progress. 2016;15(4):39. [CrossRef]
  • 9. O’Donnell K, Rooney AP, Mills GL, Kuo M, Weber NS, Rehner SA. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genetics and Biology. 2011;48(3):252-265. [CrossRef]
  • 10. Du XH, Zhao Q, Yang ZL. A review on research advances, issues, and perspectives of morels. Mycology. 2015;6(2):78-85. [CrossRef]
  • 11. Hao H, Zhang J, Wang H, et al. Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna. AMB Express. 2019;9(1):103. [CrossRef]
  • 12. Li L, Ham H, Sung J, Kim Y, Lee HS. Antioxidant Activities of Methanolic Extracts from Four Different Rose Cultivars. Journal of Food and Nutrition Research. 2014;2:69-73. [CrossRef]
  • 13. Baydar NG, Baydar H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products. 2013;41:375-380. [CrossRef]
  • 14. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Composition Analysis. 2006;19(6):669-675. [CrossRef]
  • 15. Karadeniz F, Burdurlu H, Koca N, Soyer Y. Antioxidant Activity of Selected Fruits and Vegetables Grown in Turkey. Turkish Journal of Agriculture and Forestry. 2005;29(4):297-303. [CrossRef]
  • 16. Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970-7981. [CrossRef]
  • 17. Wasser S. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J. 2014;37(6):345. [CrossRef]
  • 18. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. [CrossRef]
  • 19. Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med. 2001;30(6):583-594. [CrossRef]
  • 20. Zhang Z, Shi M, Zheng H, Ren R, Zhang S, Ma X. Structural characterization and biological activities of a new polysaccharide isolated from Morchella Sextelata. Glycoconj J. 2022;39(3):369-380. [CrossRef]
  • 21. Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochemistry. 2005;40(5):1667-1672. [CrossRef]
  • 22. Zhu LW, Zhong JJ, Tang YJ. Multi-fed batch culture integrated with three-stage light irradiation and multiple additions of copper ions for the hyperproduction of ganoderic acid and Ganoderma polysaccharides by the medicinal mushroom Ganoderma lucidum. Process Biochemistry. 2010;45(12):1904-1911. [CrossRef]
  • 23. Fraga I, Coutinho J, Bezerra RM, Dias AA, Marques G, Nunes FM. Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydrate Polymers. 2014;111:936-946. [CrossRef]
  • 24. Nguyen KD, Nguyen CM, Le DA, et al. The mixture of Ganoderma lucidum and Cordyceps militaris: Chemical composition and protective effect against oxidative stress. J Agric Food Res. 2024;15:101045. [CrossRef]
There are 24 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Selime Semra Erol 0000-0001-9883-8319

Project Number 1791405
Early Pub Date November 26, 2025
Publication Date November 26, 2025
Submission Date September 27, 2025
Acceptance Date November 7, 2025
Published in Issue Year 2025 Volume: 5 Issue: 3

Cite

EndNote Erol SS (November 1, 2025) Comparative Evaluation of Fruiting Bodies and Cultured Mycelial Extracts of Morchella importuna for Pharmacological. Pharmata 5 3 65–71.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929