Research Article
BibTex RIS Cite

Alternate-Day Fasting Modulates Serum Leptin and SOCS3 Levels and Attenuates Inflammation in an Adult Rat Model of Osteoarthritis

Year 2025, Volume: 5 Issue: 3, 83 - 94, 26.11.2025
https://doi.org/10.62425/pharmata.1799447

Abstract

Objective: This study investigated the effects of alternate-day fasting (ADF), a nonpharmacological intervention, on inflammation, oxidative stress, and lipid metabolism in adult rats with experimental knee osteoarthritis (KOA), with a particular emphasis on serum leptin and SOCS3 levels, as well as cartilage histopathology.
Methods: Twenty-four male Wistar rats (16-weeks old) were randomly assigned to four groups: C (control), OA, ADF, and OA+ADF. The KOA model was induced by intra-articular monosodium iodoacetate (MIA) injection. ADF was applied for 28 days (24-hour fasting/feeding cycles). Biochemical analyses included fasting blood glucose(FBG), lipid profile, leptin, SOCS3, tumor necrosis factor-alpha(TNF-α), interleukin-6 (IL-6), and total oxidant-antioxidant status (TOS-TAS) analyses. Histopathological evaluation was performed via hematoxylin&eosin and Masson’s trichrome staining.
Results: Compared with the C group, the OA group presented increased body weight (BW), FBG, leptin, IL-6, TNF-α, and TOS and decreased TAS and SOCS3 levels (p<0.05). Compared with the C group, the ADF group presented no adverse metabolic effects and maintained normal glucose and cytokine levels. Notably, the OA+ADF group demonstrated significantly lower BW, FBG, leptin, IL-6, TNF-α, and TOS levels and significantly greater TAS and SOCS3 levels than the OA group did (p<0.05). Histologically, the OA+ADF group presented better cartilage preservation and fewer degenerative changes than did the OA group. Additionally, ADF modulated gastrocnemius muscle weight and improved metabolic parameters.
Conclusion: ADF exerts protective effects in experimental OA by reducing systemic inflammation, regulating leptin-SOCS3 signaling, and mitigating oxidative stress. These findings suggest that ADF is a promising dietary strategy for modulating OA progression during aging.

Ethical Statement

This study was conducted at the Department of Physiology, Pamukkale University, Turkey. The animal experiments were approved by the Local Ethics Committee for Animal Experiments of Pamukkale University (approval date: 02.10.2024, protocol numbers: E-60758568-020-592158, PAUHDEK-2024/24) and carried out in accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals (National Research Council, USA)

Supporting Institution

None

Thanks

None

References

  • 1. Bolduc J,A, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radical Biology and Medicine. 2019;132:73-82. [CrossRef]
  • 2. Diekman BO, Loeser RF. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis and cartilage. 2024;32(4):365-371. [CrossRef]
  • 3. Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nature Reviews Rheumatology. 2016;12(7):412-420. [CrossRef]
  • 4. Wakale S, Wu X, Sonar Y, et al. How are aging and osteoarthritis related? Aging and disease. 2023;14(3):592. [CrossRef]
  • 5. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016;1862(4):576-591. [CrossRef]
  • 6. L oeser RF. The role of aging in the development of osteoarthritis. Trans Am Clin Climatol Assoc. 2017;128:44. [CrossRef]
  • 7. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576-590. [CrossRef]
  • 8. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. Mar 2013;123(3):958-65. [CrossRef]
  • 9. Conway J, Duggal NA. Ageing of the gut microbiome: potential influences on immune senescence and inflammageing. Ageing research reviews. 2021;68:101323. [CrossRef]
  • 10. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. [CrossRef]
  • 11. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425-432. [CrossRef]
  • 12. Scotece M, Mobasheri A. Leptin in osteoarthritis: focus on articular cartilage and chondrocytes. Life sciences. 2015;140:75-78. [CrossRef]
  • 13. Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nature Reviews Rheumatology. 2017;13(2):100-109. [CrossRef]
  • 14. Poonpet T, Honsawek S. Adipokines: Biomarkers for osteoarthritis? World journal of orthopedics. 2014;5(3):319. [CrossRef]
  • 15. Francisco V, Pino J, Campos-Cabaleiro V, et al. Obesity, fat mass and immune system: role for leptin. Frontiers in physiology. 2018;9:640. [CrossRef]
  • 16. Jiang M, He J, Sun Y, et al. Leptin induced TLR4 expression via the JAK2‐STAT3 pathway in obesity‐related osteoarthritis. Oxid Med Cell Longev. 2021;2021(1):7385160. [CrossRef]
  • 17. Yan M, Zhang J, Yang H, Sun Y. The role of leptin in osteoarthritis. Medicine. 2018;97(14):e0257. [CrossRef]
  • 18. Zhang ZM, Shen C, Li H, et al. Leptin induces the apoptosis of chondrocytes in an in vitro model of osteoarthritis via the JAK2‑STAT3 signaling pathway. Mol Med Rep. 2016;13(4):3684-3690. [CrossRef]
  • 19. Gao Y-H, Zhao C-W, Liu B, et al. An update on the association between metabolic syndrome and osteoarthritis and on the potential role of leptin in osteoarthritis. Cytokine. 2020;129:155043. [CrossRef]
  • 20. Jiang M, He J, Gu H, et al. Protective effect of resveratrol on obesity-related osteoarthritis via alleviating JAK2/STAT3 signaling pathway is independent of SOCS3. Toxicol Appl Pharmacol. 2020;388:114871. [CrossRef] 21. Tawfik MK, Badran DI, Keshawy MM, Makary S, Abdo M. Alternate-day fat diet and exenatide modulate the brain leptin JAK2/STAT3/SOCS3 pathway in a fat diet-induced obesity and insulin resistance mouse model. Arch Med Sci. 2023;19(5):1508. [CrossRef]
  • 22. Arif M. The Effect of Intermittent Fasting on Insulin Resistance and Lipid Metabolism. Int Sci Health J. 2023;1(3):42-51. [CrossRef]
  • 23. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46-58. [CrossRef]
  • 24. Michalsen A, Li C. Fasting therapy for treating and preventing disease-current state of evidence. Forsch Komplement med. 2013;20(6):444-453. [CrossRef]
  • 25. Gundogdu G, Kilic-Erkek O, Gundogdu K. The impact of sericin on inflammation, oxidative stress, and lipid metabolism in female rats with experimental knee osteoarthritis. Clin Rheumatol. 2024:1-10. [CrossRef]
  • 26. Gundogdu K, Gundogdu G, Demirkaya Miloglu F, Demirci T, Tascı SY, Abd El-Aty A. Anti-inflammatory effects of boric acid in treating knee osteoarthritis: biochemical and histopathological evaluation in rat model. Biol Trace Elem Res. 2024;202(6):2744-2754. [CrossRef]
  • 27. Gundogdu G, Demirkaya Miloglu F, Gundogdu K, et al. Investigation of the efficacy of daidzein in experimental knee osteoarthritis-induced with monosodium iodoacetate in rats. Clin Rheumatol. 2020;39:2399-2408. [CrossRef]
  • 28. Erkek ÖK, Gündoğdu G. Gender-specific effects of alternate-day fasting on body weight, oxidative stress, and metabolic health in middle-aged rats. Pamukkale Med J. 2025; 18(1):6-12. [CrossRef]
  • 29. Yamada EF, Bobinski F, Martins DF, Palandi J, Folmer V, da Silva MD. Photobiomodulation therapy in knee osteoarthritis reduces oxidative stress and inflammatory cytokines in rats. J Biophotonics. 2020;13(1):e201900204. [CrossRef]
  • 30. Pitcher T, Sousa-Valente J, Malcangio M. The monoiodoacetate model of osteoarthritis pain in the mouse. J Vis Exp. 2016;(111):e53746. [CrossRef]
  • 31. Domaszewski P, Konieczny M, Pakosz P, Bączkowicz D, Sadowska-Krępa E. Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 years of age. Int J Environ Res Public Health. 2020;17(11):4138. [CrossRef]
  • 32. Belkacemi L, Selselet-Attou G, Hupkens E, et al. Intermittent fasting modulation of the diabetic syndrome in streptozotocin‐injected rats. International journal of endocrinology. 2012;2012(1):962012. [CrossRef]
  • 33. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-119. [CrossRef]
  • 34. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-1111. [CrossRef]
  • 35. Mobasheri A, Rayman MP, Gualillo O, Sellam J, Van Der Kraan P, Fearon U. The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2017;13(5):302-311. [CrossRef]
  • 36. Kilic-Erkek O, Gundogdu G, Anber T, Akca H, Dodurga Y, Abd El-Aty A. Alternate-Day Fasting Modulates Endoplasmic Reticulum Stress and Lipid Metabolism in Young and Middle-Aged Rats. Bratisl Med J. 2025:126:1319-1331. [CrossRef]
  • 37. Horrillo D, Sierra J, Arribas C, et al. Age-associated development of inflammation in Wistar rats: effects of caloric restriction. Arch Physiol Biochem. 2011;117(3):140-150. [CrossRef]
  • 38. Mattson MP, Allison DB, Fontana L, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A. 2014;111(47):16647-16653. [CrossRef]
  • 39. Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. Nov 2009;90(5):1138-43. [CrossRef]
  • 40. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell metab. 2014;19(2):181-192. [CrossRef]
  • 41. Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology. 2016;17(1):7-19. [CrossRef]
  • 42. Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm. 2018;2018:9076485. [CrossRef]
  • 43. Tudorachi NB, Totu EE, Fifere A, et al. The implication of reactive oxygen species and antioxidants in knee osteoarthritis. Antioxidants. 2021;10(6):985. [CrossRef]
  • 44. Zhang P, Zhong Z-H, Yu H-T, Liu B. Significance of increased leptin expression in osteoarthritis patients. PloS one. 2015;10(4):e0123224. [CrossRef]
  • 45. Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. Jan 2020;93(1):12-22. [CrossRef]
  • 46. Vuolteenaho K, Koskinen A, Moilanen E. Leptin–a link between obesity and osteoarthritis. Applications for prevention and treatment. Basic Clin Pharmacol Toxicol. 2014;114(1):103-108. [CrossRef]
  • 47. Wunderlich CM, Hövelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. Jak-stat. 2013;2(2):e23878. [CrossRef]
  • 48. Pedroso JA, Ramos-Lobo AM, Donato J. SOCS3 as a future target to treat metabolic disorders. Hormones. 2019;18:127-136. [CrossRef]
  • 49. Araujo EP, Moraes JC, Cintra DE, Velloso LA. MECHANISMS IN ENDOCRINOLOGY: Hypothalamic inflammation and nutrition. Eur J Endocrinol. 2016;175(3):R97-R105. [CrossRef]
  • 50. de Souza Marinho T, Ornellas F, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition. 2019;65:103-112. [CrossRef]

Alternatif Günlerde Açlık Serum Leptin ve SOCS3 Düzeylerini Düzenler ve Osteoartritli Erişkin Sıçan Modelinde İnflamasyonu Azaltır

Year 2025, Volume: 5 Issue: 3, 83 - 94, 26.11.2025
https://doi.org/10.62425/pharmata.1799447

Abstract

Amaç: Bu çalışma, farmakolojik olmayan bir müdahale olan alternatif günlerde açlık (ADF), deneysel diz osteoartriti (OA) oluşturulmuş erişkin sıçanlarda inflamasyon, oksidatif stres ve lipid metabolizması üzerindeki etkilerini araştırmayı amaçlandıÇalışmada özellikle serum leptin ve SOCS3 düzeyleri ile kıkırdak histopatolojisine odaklanıldı.
Yöntemler: Yirmi dört erkek Wistar sıçanı (16 haftalık) rastgele dört gruba ayrıldı: Kontrol (K), OA, ADF ve OA+ADF. OA modeli, intraartiküler monosodyum iyodoasetat (MIA) enjeksiyonu ile oluşturuldu. ADF uygulaması 28 gün boyunca (24 saat açlık/beslenme döngüleri) gerçekleştirildi. Biyokimyasal analizlerde açlık kan şekeri (AKŞ), lipid profili, leptin, SOCS3, tümör nekroz faktörü-alfa (TNF-α), interlökin-6 (IL-6) ve total oksidan–antioksidan durumu (TOS-TAS) değerlendirildi. Histopatolojik inceleme hematoksilen&eozin ve Masson trikrom boyamaları ile yapıldı.
Bulgular: Kontrol grubu ile karşılaştırıldığında, OA grubunda vücut ağırlığı (VA), AKŞ, leptin, IL-6, TNF-α ve TOS düzeyleri artarken; TAS ve SOCS3 düzeyleri azaldı (p<0.05). ADF grubunda kontrol grubuna kıyasla olumsuz metabolik etki gözlenmedi; glukoz ve sitokin düzeyleri normal sınırlar içinde kaldı. Özellikle OA+ADF grubunda VA, AKŞ, leptin, IL-6, TNF-α ve TOS düzeyleri anlamlı olarak daha düşük; TAS ve SOCS3 düzeyleri ise daha yüksek bulundu (p<0.05). Histolojik olarak OA+ADF grubu, OA grubuna kıyasla daha iyi kıkırdak korunumu ve daha az dejeneratif değişiklik gösterdi. Ayrıca ADF uygulaması gastroknemius kas ağırlığını düzenledi ve metabolik parametreleri iyileştirdi.
Sonuç: ADF, deneysel OA’da sistemik inflamasyonu azaltarak, leptin-SOCS3 sinyal yolunu düzenleyerek ve oksidatif stresi hafifleterek koruyucu etki göstermektedir. Bulgular, ADF’nin yaşlanma sürecinde OA progresyonunu modüle etmede umut verici bir beslenme stratejisi olabileceğini düşündürmektedir.

Ethical Statement

Bu çalışma Pamukkale Üniversitesi, Tıp Fakültesi, Fizyoloji Anabilim Dalı’nda yürütülmüştür. Hayvan deneyleri Pamukkale Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu tarafından onaylanmıştır (onay tarihi: 02.10.2024; protokol numaraları: E-60758568-020-592158, PAUHDEK-2024/24). Çalışma, Ulusal Araştırma Konseyi (ABD) tarafından yayımlanan Guide for the Care and Use of Laboratory Animals kılavuzuna uygun olarak gerçekleştirilmiştir.

Supporting Institution

yok

Thanks

Yok

References

  • 1. Bolduc J,A, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radical Biology and Medicine. 2019;132:73-82. [CrossRef]
  • 2. Diekman BO, Loeser RF. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis and cartilage. 2024;32(4):365-371. [CrossRef]
  • 3. Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nature Reviews Rheumatology. 2016;12(7):412-420. [CrossRef]
  • 4. Wakale S, Wu X, Sonar Y, et al. How are aging and osteoarthritis related? Aging and disease. 2023;14(3):592. [CrossRef]
  • 5. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016;1862(4):576-591. [CrossRef]
  • 6. L oeser RF. The role of aging in the development of osteoarthritis. Trans Am Clin Climatol Assoc. 2017;128:44. [CrossRef]
  • 7. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576-590. [CrossRef]
  • 8. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. Mar 2013;123(3):958-65. [CrossRef]
  • 9. Conway J, Duggal NA. Ageing of the gut microbiome: potential influences on immune senescence and inflammageing. Ageing research reviews. 2021;68:101323. [CrossRef]
  • 10. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. [CrossRef]
  • 11. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425-432. [CrossRef]
  • 12. Scotece M, Mobasheri A. Leptin in osteoarthritis: focus on articular cartilage and chondrocytes. Life sciences. 2015;140:75-78. [CrossRef]
  • 13. Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nature Reviews Rheumatology. 2017;13(2):100-109. [CrossRef]
  • 14. Poonpet T, Honsawek S. Adipokines: Biomarkers for osteoarthritis? World journal of orthopedics. 2014;5(3):319. [CrossRef]
  • 15. Francisco V, Pino J, Campos-Cabaleiro V, et al. Obesity, fat mass and immune system: role for leptin. Frontiers in physiology. 2018;9:640. [CrossRef]
  • 16. Jiang M, He J, Sun Y, et al. Leptin induced TLR4 expression via the JAK2‐STAT3 pathway in obesity‐related osteoarthritis. Oxid Med Cell Longev. 2021;2021(1):7385160. [CrossRef]
  • 17. Yan M, Zhang J, Yang H, Sun Y. The role of leptin in osteoarthritis. Medicine. 2018;97(14):e0257. [CrossRef]
  • 18. Zhang ZM, Shen C, Li H, et al. Leptin induces the apoptosis of chondrocytes in an in vitro model of osteoarthritis via the JAK2‑STAT3 signaling pathway. Mol Med Rep. 2016;13(4):3684-3690. [CrossRef]
  • 19. Gao Y-H, Zhao C-W, Liu B, et al. An update on the association between metabolic syndrome and osteoarthritis and on the potential role of leptin in osteoarthritis. Cytokine. 2020;129:155043. [CrossRef]
  • 20. Jiang M, He J, Gu H, et al. Protective effect of resveratrol on obesity-related osteoarthritis via alleviating JAK2/STAT3 signaling pathway is independent of SOCS3. Toxicol Appl Pharmacol. 2020;388:114871. [CrossRef] 21. Tawfik MK, Badran DI, Keshawy MM, Makary S, Abdo M. Alternate-day fat diet and exenatide modulate the brain leptin JAK2/STAT3/SOCS3 pathway in a fat diet-induced obesity and insulin resistance mouse model. Arch Med Sci. 2023;19(5):1508. [CrossRef]
  • 22. Arif M. The Effect of Intermittent Fasting on Insulin Resistance and Lipid Metabolism. Int Sci Health J. 2023;1(3):42-51. [CrossRef]
  • 23. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46-58. [CrossRef]
  • 24. Michalsen A, Li C. Fasting therapy for treating and preventing disease-current state of evidence. Forsch Komplement med. 2013;20(6):444-453. [CrossRef]
  • 25. Gundogdu G, Kilic-Erkek O, Gundogdu K. The impact of sericin on inflammation, oxidative stress, and lipid metabolism in female rats with experimental knee osteoarthritis. Clin Rheumatol. 2024:1-10. [CrossRef]
  • 26. Gundogdu K, Gundogdu G, Demirkaya Miloglu F, Demirci T, Tascı SY, Abd El-Aty A. Anti-inflammatory effects of boric acid in treating knee osteoarthritis: biochemical and histopathological evaluation in rat model. Biol Trace Elem Res. 2024;202(6):2744-2754. [CrossRef]
  • 27. Gundogdu G, Demirkaya Miloglu F, Gundogdu K, et al. Investigation of the efficacy of daidzein in experimental knee osteoarthritis-induced with monosodium iodoacetate in rats. Clin Rheumatol. 2020;39:2399-2408. [CrossRef]
  • 28. Erkek ÖK, Gündoğdu G. Gender-specific effects of alternate-day fasting on body weight, oxidative stress, and metabolic health in middle-aged rats. Pamukkale Med J. 2025; 18(1):6-12. [CrossRef]
  • 29. Yamada EF, Bobinski F, Martins DF, Palandi J, Folmer V, da Silva MD. Photobiomodulation therapy in knee osteoarthritis reduces oxidative stress and inflammatory cytokines in rats. J Biophotonics. 2020;13(1):e201900204. [CrossRef]
  • 30. Pitcher T, Sousa-Valente J, Malcangio M. The monoiodoacetate model of osteoarthritis pain in the mouse. J Vis Exp. 2016;(111):e53746. [CrossRef]
  • 31. Domaszewski P, Konieczny M, Pakosz P, Bączkowicz D, Sadowska-Krępa E. Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 years of age. Int J Environ Res Public Health. 2020;17(11):4138. [CrossRef]
  • 32. Belkacemi L, Selselet-Attou G, Hupkens E, et al. Intermittent fasting modulation of the diabetic syndrome in streptozotocin‐injected rats. International journal of endocrinology. 2012;2012(1):962012. [CrossRef]
  • 33. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-119. [CrossRef]
  • 34. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-1111. [CrossRef]
  • 35. Mobasheri A, Rayman MP, Gualillo O, Sellam J, Van Der Kraan P, Fearon U. The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2017;13(5):302-311. [CrossRef]
  • 36. Kilic-Erkek O, Gundogdu G, Anber T, Akca H, Dodurga Y, Abd El-Aty A. Alternate-Day Fasting Modulates Endoplasmic Reticulum Stress and Lipid Metabolism in Young and Middle-Aged Rats. Bratisl Med J. 2025:126:1319-1331. [CrossRef]
  • 37. Horrillo D, Sierra J, Arribas C, et al. Age-associated development of inflammation in Wistar rats: effects of caloric restriction. Arch Physiol Biochem. 2011;117(3):140-150. [CrossRef]
  • 38. Mattson MP, Allison DB, Fontana L, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A. 2014;111(47):16647-16653. [CrossRef]
  • 39. Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. Nov 2009;90(5):1138-43. [CrossRef]
  • 40. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell metab. 2014;19(2):181-192. [CrossRef]
  • 41. Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology. 2016;17(1):7-19. [CrossRef]
  • 42. Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm. 2018;2018:9076485. [CrossRef]
  • 43. Tudorachi NB, Totu EE, Fifere A, et al. The implication of reactive oxygen species and antioxidants in knee osteoarthritis. Antioxidants. 2021;10(6):985. [CrossRef]
  • 44. Zhang P, Zhong Z-H, Yu H-T, Liu B. Significance of increased leptin expression in osteoarthritis patients. PloS one. 2015;10(4):e0123224. [CrossRef]
  • 45. Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. Jan 2020;93(1):12-22. [CrossRef]
  • 46. Vuolteenaho K, Koskinen A, Moilanen E. Leptin–a link between obesity and osteoarthritis. Applications for prevention and treatment. Basic Clin Pharmacol Toxicol. 2014;114(1):103-108. [CrossRef]
  • 47. Wunderlich CM, Hövelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. Jak-stat. 2013;2(2):e23878. [CrossRef]
  • 48. Pedroso JA, Ramos-Lobo AM, Donato J. SOCS3 as a future target to treat metabolic disorders. Hormones. 2019;18:127-136. [CrossRef]
  • 49. Araujo EP, Moraes JC, Cintra DE, Velloso LA. MECHANISMS IN ENDOCRINOLOGY: Hypothalamic inflammation and nutrition. Eur J Endocrinol. 2016;175(3):R97-R105. [CrossRef]
  • 50. de Souza Marinho T, Ornellas F, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition. 2019;65:103-112. [CrossRef]
There are 49 citations in total.

Details

Primary Language English
Subjects Clinical Chemistry
Journal Section Research Article
Authors

Koksal Gundogdu 0000-0001-6820-5625

Gülşah Gündoğdu 0000-0002-9924-5176

Özgen Kılıç Erkek 0000-0001-8037-099X

Gülçin Abban Mete 0000-0001-6794-3685

Early Pub Date November 26, 2025
Publication Date November 26, 2025
Submission Date October 8, 2025
Acceptance Date October 28, 2025
Published in Issue Year 2025 Volume: 5 Issue: 3

Cite

EndNote Gundogdu K, Gündoğdu G, Kılıç Erkek Ö, Abban Mete G (November 1, 2025) Alternate-Day Fasting Modulates Serum Leptin and SOCS3 Levels and Attenuates Inflammation in an Adult Rat Model of Osteoarthritis. Pharmata 5 3 83–94.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929