Research Article
BibTex RIS Cite
Year 2023, , 37 - 62, 18.07.2023
https://doi.org/10.47086/pims.1214064

Abstract

References

  • Reference1 M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory 36 (2021) 18-38.
  • Reference2 M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, R´eduit, Mauritius (2020) 1-311 (i.-xxxvi.).
  • Reference3 S. -M. Jung and D. Nam, Some Properties of Interior and Closure in General Topology, Mathematics (MDPI Journal) 7(624) (2019) 1-10.
  • Reference4 Y. Lei and J. Zhang, Generalizing Topological Set Operators, Electronic Notes in Theoretical Science 345 (2019) 63–76.
  • Reference5 A. Gupta and R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Math. Appl. 6 (2017) 11-20.
  • Reference6 R. Rajendiran and M. Thamilselvan, Properties of g∗s∗-Closure, g∗s∗-Interior and g∗s∗- Derived Sets in Topological Spaces, Applied Mathematical Sciences 8(140) (2014) 6969–6978.
  • Reference7 B. K. Tyagi and R. Choudhary, On Generalized Closure Operators in Generalized Topological Spaces, International Journal of Computer Applications 82(15) (2013) 1-5.
  • Reference8 C. Cao and B. Wang and W. Wang, Generalized Topologies, Generalized Neighborhood Systems, and Generalized Interior Operators, Acta Math. Hungar. 132(4) (2011) 310-315.
  • Reference9 V. Pankajam, On the Properties of δ-Interior and δ-Closure in Generalized Topological Spaces, International Journal for Research in Mathematical Archive 2(8) (2011) 1321-1332.
  • Reference10 B. J. Gardner and M. Jackson, The Kuratowski Closure-Complement Theorem, New Zealand Journal of Mathematics 38 (2008) 9-44.
  • Reference11 ´A. Cs´asz´ar, Further Remarks on the Formula for γ-Interior, Acta Math. Hungar. 113(4) (2006) 325-332.
  • Reference12 ´A. Cs´asz´ar, On the γ-Interior and γ-Closure of a Set, Acta Math. Hungar. 80 (1998) 89-93.
  • Reference13 H. Ogata, Operations on Topological Spaces and Associated Topology, Math. Japonica 36 (1991) 175-184.
  • Reference14 I. Z. Kleiner, Closure and Boundary Operators in Topological Spaces, Ukr Math. J. 29 (1977) 295-296.
  • Reference15 F. R. Harvey, The Derived Set Operator, The American Mathematical Monthly 70(10) (1963) 1085-1086.
  • Reference16 D. H. Staley, On the Commutivity of the Boundary and Interior Operators in a Topological Space, The Ohio Journal of Science 68(2):84 (1968).
  • Reference17 N. Levine, On the Commutivity of the Closure and Interior Operators in Topological Spaces, Amer. Math. Monthly 68(5) (1961) 474-477.
  • Reference18 C. Kuratowski, Sur l’Op´eration A¯ de l’Analyse Situs, Fund. Math. 3 (1922) 182-199.
  • Reference19 M. I. Khodabocus and N. -Ul. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part I. Generalized Interior and Generalized Closure, Proceedings of International mathematical Sciences 5(1) (2023) 6-36.
  • Reference20 M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Separation Axioms in Generalized Topological Spaces, Journal of Universal Mathematics 5(1) (2022) 1-23.
  • Reference21 ´A. Cs´asz´ar, Generalized Open Sets in Generalized Topologies, Acta Math. Hungar. 106(1-2) (2005) 53-66.
  • Reference22 V. Pavlovi´c and A. S. Cvetkovi´c, On Generalized Topologies arising from Mappings, Vesnik 38(3) (2012) 553-565.
  • Reference23 ´A. Cs´asz´ar, Remarks on Quasi-Topologies, Acta Math. Hungar. 119(1-2) (2008) 197-200.

Generalized Topological Operator Theory in Generalized Topological Spaces: Part II. Generalized Interior and Generalized Closure

Year 2023, , 37 - 62, 18.07.2023
https://doi.org/10.47086/pims.1214064

Abstract

In a recent paper (Cf. [19]), we have presented the definitions and the essential properties of the generalized topological operators
g-Int_g, g-Cl_g : P (Ω) −→ P (Ω) (g-T_g-interior and g-T_g-closure operators) in a generalized topological space T_g = (Ω, T_g) (T_g-space). Principally, we have
shown that (g-Int_g , g-Cl_g) : P (Ω) × P (Ω) −→ P (Ω) × P (Ω) is (Ω, ∅)-grounded, (expansive, non-expansive), (idempotent, idempotent) and (∩, ∪)-additive. We have also shown that g-Int_g : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than int_g : P (Ω) −→ P (Ω) and g-Cl_g : P (Ω) −→ P (Ω) is coarser (or, smaller, weaker) than
cl_g : P (Ω) −→ P (Ω). In this paper, we study the commutativity of g-Int_g , g-Cl_g : P (Ω) −→ P (Ω) and T_g-sets having some (g-Int_g, g-Cl_g)-based properties
(g-P_g, g-Q_g-properties) in T_g-spaces. The main results of the study are: The g-T_g-operators g-Int_g, g-Cl_g : P (Ω) −→ P (Ω) are duals and g-P_g-property is preserved under their g-T_g-operations. A T_g-set having g-P_g-property is equivalent to the T_g-set or its complement having g-Q_g-property.
The g-Q_g-property is preserved under the set-theoretic ∪-operation and g-P_g-property is preserved under the set-theoretic {∪, ∩, C}-operations. Finally, a T_g-set having {g-P_g , g-Q_g}-property also has {P_g , Q_g }-property.

References

  • Reference1 M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory 36 (2021) 18-38.
  • Reference2 M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, R´eduit, Mauritius (2020) 1-311 (i.-xxxvi.).
  • Reference3 S. -M. Jung and D. Nam, Some Properties of Interior and Closure in General Topology, Mathematics (MDPI Journal) 7(624) (2019) 1-10.
  • Reference4 Y. Lei and J. Zhang, Generalizing Topological Set Operators, Electronic Notes in Theoretical Science 345 (2019) 63–76.
  • Reference5 A. Gupta and R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Math. Appl. 6 (2017) 11-20.
  • Reference6 R. Rajendiran and M. Thamilselvan, Properties of g∗s∗-Closure, g∗s∗-Interior and g∗s∗- Derived Sets in Topological Spaces, Applied Mathematical Sciences 8(140) (2014) 6969–6978.
  • Reference7 B. K. Tyagi and R. Choudhary, On Generalized Closure Operators in Generalized Topological Spaces, International Journal of Computer Applications 82(15) (2013) 1-5.
  • Reference8 C. Cao and B. Wang and W. Wang, Generalized Topologies, Generalized Neighborhood Systems, and Generalized Interior Operators, Acta Math. Hungar. 132(4) (2011) 310-315.
  • Reference9 V. Pankajam, On the Properties of δ-Interior and δ-Closure in Generalized Topological Spaces, International Journal for Research in Mathematical Archive 2(8) (2011) 1321-1332.
  • Reference10 B. J. Gardner and M. Jackson, The Kuratowski Closure-Complement Theorem, New Zealand Journal of Mathematics 38 (2008) 9-44.
  • Reference11 ´A. Cs´asz´ar, Further Remarks on the Formula for γ-Interior, Acta Math. Hungar. 113(4) (2006) 325-332.
  • Reference12 ´A. Cs´asz´ar, On the γ-Interior and γ-Closure of a Set, Acta Math. Hungar. 80 (1998) 89-93.
  • Reference13 H. Ogata, Operations on Topological Spaces and Associated Topology, Math. Japonica 36 (1991) 175-184.
  • Reference14 I. Z. Kleiner, Closure and Boundary Operators in Topological Spaces, Ukr Math. J. 29 (1977) 295-296.
  • Reference15 F. R. Harvey, The Derived Set Operator, The American Mathematical Monthly 70(10) (1963) 1085-1086.
  • Reference16 D. H. Staley, On the Commutivity of the Boundary and Interior Operators in a Topological Space, The Ohio Journal of Science 68(2):84 (1968).
  • Reference17 N. Levine, On the Commutivity of the Closure and Interior Operators in Topological Spaces, Amer. Math. Monthly 68(5) (1961) 474-477.
  • Reference18 C. Kuratowski, Sur l’Op´eration A¯ de l’Analyse Situs, Fund. Math. 3 (1922) 182-199.
  • Reference19 M. I. Khodabocus and N. -Ul. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part I. Generalized Interior and Generalized Closure, Proceedings of International mathematical Sciences 5(1) (2023) 6-36.
  • Reference20 M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Separation Axioms in Generalized Topological Spaces, Journal of Universal Mathematics 5(1) (2022) 1-23.
  • Reference21 ´A. Cs´asz´ar, Generalized Open Sets in Generalized Topologies, Acta Math. Hungar. 106(1-2) (2005) 53-66.
  • Reference22 V. Pavlovi´c and A. S. Cvetkovi´c, On Generalized Topologies arising from Mappings, Vesnik 38(3) (2012) 553-565.
  • Reference23 ´A. Cs´asz´ar, Remarks on Quasi-Topologies, Acta Math. Hungar. 119(1-2) (2008) 197-200.
There are 23 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Mohammad Irshad Khodabocus 0000-0003-2252-4342

Noor-ul-hacq Sookıa 0000-0002-3155-0473

Early Pub Date July 17, 2023
Publication Date July 18, 2023
Acceptance Date May 2, 2023
Published in Issue Year 2023

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.