On the $\lambda _{h}^{\alpha }-$Statistical Convergence of the Functions Defined on the Time Scale
Year 2019,
Volume: 1 Issue: 1, 1 - 10, 15.06.2019
Name Tok
,
Metin Basarır
Abstract
In this paper, we have introduced the concepts $\lambda _{h}^{\alpha }$% -density of a subset of the time scale $\mathbb{T}$ and $\lambda _{h}^{\alpha }$-statistical convergence of order $\alpha $ $(0<\alpha \leq 1) $ of $\Delta -$ measurable function $f$ \ defined on the time scale $% \mathbb{T}$ with the help of modulus function $h$ and $\lambda =(\lambda _{n})$ sequences. Later, we have discussed the connection between classical convergence, $\lambda $-statistical convergence and $\lambda _{h}^{\alpha }$% -statistical convergence. In addition, we have seen that $f$ is strongly $% \lambda _{h}^{\alpha }$-Cesaro summable on T then $f$ is $\lambda _{h}^{\alpha }$-statistical convergent of order $\alpha .$
References
- [1] A.Aizpuru, M.C.Listán-Garcĭa and F.Rambla-Borreno, Density by moduli and statistical convergence, Quaest. Math. 37 4 (2014) 525--530.
- [2] G. Aslim, G.Sh. Guseinov, Weak semirings, ω-semirings, and measures, Bull. Allahabad Math. Soc. 14 (1999) 1--20.
- [3] A.Cabada and D.R.Vivero, Expression of the Lebesque Δ-integral on time scales as a usual Lebesque integral; application to the calculus of Δ-antiderivates, Math. Comput. Modelling, 43 (2006) 194--207.
- [4] H. Fast, Sur la convergence statitique, Colloq. Math. 2 (1951) 241--244.
- [5] J.A.Fridy, On statistical convergence, Analysis, 5 (1985) 301--313.
- [6] M.Gürdal, M.O.Özgür, A generalized statistical convergence via moduli, Electron. J. Math. Anal. Applic. 3 2 (2015) 173--178.
- [7] G.Sh.Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 1 (2003) 107--127.
- [9] S.Hilger: Ein maßkettenkalkül mit anwendung auf zentrumsmanningfaltigkeilen Ph.D thesis, Universitat, Würzburg (1989).
- [10] S.Hilger, Analysis on measure chains-A unified a approach to continuous and discrete calculus, Results Math. 18 (1990) 19--56.
- [11] H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, (2019) 1--8.
- [12] E.Kolk The statistical convergence in Banach spacess, Acta Comment. Univ. Tartu. Math. 928 (1991) 41--52.
- [13] K.Li, S.Lin and Y. Ge, On statistical convergence in cone metric space, Topology Appl. 196 (2015) 641--651.
- [14] G.Di.Maio and L.D.R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008) 28--45
- [15] H.Nakano, Concav modulus, J. Math. Soc. Jpn. 5 (1953) 29--49.
- [16] W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math. 25 (1973) 973--978.
- [17] T.Rzezuchowski, A note on measures on time scales, Demonstr. Math. 33 (2009) 27--40.
- [18] M.S.Seyyidoğlu and N.O.Tan, A note on statistical convergence on time scales, J. Inequal. Appl. (2012) 219--227.
- [19] H. Steinhaus, Sur la convergence ordinarie et la convergence asimptotique, Colloq. Math. 2 (1951) 73--74.
- [20] I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers, Maltepe Journal of Mathematics, 1, 1, (2019)18--23.
- [21] Ş. Yıldız, Lacunary statistical p-quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, (2019) 9--17.
- [22] A. Zygmund, Trigonometric Series, United Kingtom: Cambridge Univ. Press (1979).
- [23] Aulbach, B, Hilger, S: A unified approach to continuous and discrete dynamics. J.Qual. Theory Diff.Equ. (Szeged, 1988), Colloq. Math. Soc. J´anos Bolyai, North-Holland Amsterdam 53, 37--56 (1990).
- [24] I. J. Maddox, Spaces of strongly summable sequences, Quarterly Journal of Mathematics: Oxford Journals, 18(2) (1967), 345-355
- [25] M. Bohner and A. Peterson, Dynamic equations on time scales, an introduction with applications, (2001), Birkhauser, Boston.
- [26] R. Agarwal, M. Bohner, D. O'Regan, and A. Peterson, Dynamic equations on time scales: a survey, Journal of Computational and Applied Mathematics, 141(1--2) (2002), 1-26.
- [27] I. J. Maddox, Statistical convergence in a locally convex space, Mathematical Proceedings of the Cambridge Philosophical Society, 104(1) (1988), 141--145.
- [28] M. Mursaleen, -statistical convergence, Mathematica Slovaca, 50 (1) (2000), 111-115.
- [29] F. Nuray, λ-strongly summable and λ-statistically convergent functions, Iranian Journal of Science and Technology; Transaction A Science, 34(4) (2010), 335--338.
- [30] T. Salat, On statistically convergent sequences of real numbers, Mathematica Slovaca, 30 (1980), 139-150.
- [31] C. Turan and O. Duman, Statistical convergence on time scales and its characterizations, Advances in Applied Mathematics and Approximation Theory, Springer, Proceedings in Mathematics & Statistics, 41 (2013), 57-71.
- [32] Y. Altin, H. Koyunbakan and E. Yilmaz, Uniform Statistical Convergence on Time Scales, Journal of Applied Mathematics, Volume 2014, Article ID 471437, 6 pages.
- [33] F. Moricz, Statistical limit of measurable functions, Analysis, 24 (2004), 1-18.
- [34] E. Yilmaz, Y. Altin and H. Koyunbakan, λ- Statistical convergence on Time scales,Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 23 (2016) 69-78
- [35] S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, Statistical convergence through de la Vall´ee-Poussin mean in locally solid Riesz spaces, Advances in Difference Equations, 2013, 2013:66.
- [36] A. Cabada and D. R. Vivero, Expression of the Lebesque - integral on time scales as a usual Lebesque integral; application to the calculus of -antiderivates, Mathematical and Computer Modelling, 43 (2006), 194-207.
- [37] A. D.Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.
- [38] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India (2010) 121-129.
- [39] E. Kayan and R. Çolak, λ_{d} -Statistical Convergence, λ_{d}-statistical Boundedness and Strong (V,λ)_{d}- summability in Metric Spaces, Mathematics and Computing. ICMC 2017. Communications in Computer and Information Science, vol 655 (2017) pp. 391- 403 Springer, doi: 10.1007/978-981-10-4642-1-33.
- [40] I. J. Maddox, Sequence spaces de…ned by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1986) 161-166.
- [41] V.K. Bhardwaj, S. Dhawan f- statistical convergence of order α and strong Cesàro summability of order α with respect to a modulus, J. Inequal. Appl. 332 (2015) 14 pp. doi:10.1186/s13660-015-0850-x.
- [42] Nihan Turan and Metin Başarır, A note on quasi-statistical convergence of order α in rectangular cone metric space, Konuralp J.Math., 7 (1) (2019) 91-96.
- [43] Nihan Turan and Metin Başarır, On the Δ_{g}-statistical convergence of the function defined time scale, AIP conference proceding, 2019.