Research Article
BibTex RIS Cite

Common fixed points of Geraghty-Suzuki type contraction maps in b-metric spaces

Year 2020, Volume: 2 Issue: 1, 26 - 47, 30.06.2020

Abstract

In this paper, we prove the existence and uniqueness of common fixed points for two pairs of
selfmaps satisfying a Geraghty-Suzuki type contraction condition in which one pair is compatible,
b-continous and the another one is weakly compatible in complete b-metric spaces. Further, we
prove the same with different hypotheses on two pairs of selfmaps which satisfy b-(E.A)-property.
We draw some corollaries from our results and provide examples in support of our results

Supporting Institution

PSCMR CET, Vijayawada, Andhra Pradesh, India

Thanks

To The Executive Editor, Proceedings of International Mathematical Sciences I am herewith submitting my research paper(PDF file) entitled ``Common fixed points of Geraghty-Suzuki type contraction maps in b-metric spaces" Authors : G. V. R. Babu and D. Ratna Babu for favor of publication in the journal `Proceedings of International Mathematical Sciences'. Thanking you Your sincerely D. Ratna Babu

References

  • [1] M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-188.
  • [2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64(4)(2014), 941-960.
  • [3] H. Aydi, M-F. Bota, E. Karapınar and S. Mitrovic, A fixed point theorem for set-valued quasi contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
  • [4] G. V. R. Babu and G. N. Alemayehu, A common fixed point theorem for weakly contractive mappings satisfying property (E.A), Applied Mathematics E-Notes, 24(6)(2012), 975-981.
  • [5] G. V. R. Babu and T. M. Dula, Common fixed points of two pairs of selfmaps satisfying (E.A)- property in b-metric spaces using a new control function, Inter. J. Math. Appl., 5(1-B)(2017), 145-153.
  • [6] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal. Gos. Ped. Inst. Unianowsk, 30(1989), 26-37.
  • [7] V. Berinde, Iterative approximation of fixed points, Springer, 2006.
  • [8] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4(3)(2009), 285-301.
  • [9] M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8(2)(2010), 367-377.
  • [10] N. Bourbaki, Topologie Generale, Herman: Paris, France, 1974.
  • [11] L. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
  • [12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
  • [13] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico (DellUniv. di Modena), 46(1998), 263-276.
  • [14] B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure and Appl. Math., 6(1975), 1455-1458.
  • [15] D. Dukic, Z. Kadelburg and S. Radenovic, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal.,(2011), Article ID 561245, 13 pages.
  • [16] H. Faraji, D. Savic and S. Radenovic, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Axioms, 8(34)(2019), 12 pages.
  • [17] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40(1973), 604-608.
  • [18] H. Huang, G. Deng and S. Radenovic, Fixed point theorems for C-class functions in b-metric spaces and applications, J. Nonlinear Sci. Appl., 10(2017), 5853-5868.
  • [19] N. Hussain, V. Paraneh, J. R. Roshan and Z. Kadelburg, Fixed points of cycle weakly ( ; '; L; A;B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013(2013), 256, 18 pages.
  • [20] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(1986), 771-779.
  • [21] G. Jungck and B. E. Rhoades, Fixed points of set-valued functions without continuity, Indian J. Pure and Appl. Math., 29(3)(1998), 227-238.
  • [22] P. Kumam and W. Sintunavarat, The existence of fixed point theorems for partial q-set valued quasi-contractions in b-metric spaces and related results, Fixed point theory appl., 2014(2014): 226, 20 pages.
  • [23] A. Latif, V. Parvaneh, P. Salimi and A. E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 363-377.
  • [24] B. T. Leyew and M. Abbas, Fixed point results of generalized Suzuki-Geraghty contractions on f-orbitally complete b-metric spaces, U. P. B. Sci. Bull., Series A, 79(2)2017, 113-124.
  • [25] V. Ozturk and D. Turkoglu, Common fixed point theorems for mappings satisfying (E.A)-property in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 1127-1133.
  • [26] V. Ozturk and S. Radenovic, Some remarks on b-(E.A)-property in b-metric spaces, Springer Plus, 5(2016), 544, 10 pages.
  • [27] V. Ozturk and A. H. Ansari, Common fixed point theorems for mapping satisfying (E.A)-property via C-class functions in b-metric spaces, Appl. Gen. Topol., 18(1)(2017), 45-52.
  • [28] J. R. Roshan, V. Paraneh and Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7(4)(2014), 229-245.
  • [29] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinearcontractions in b-metric spaces, J. Math. Anal., 7(4)(2016), 1-12.
  • [30] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.
Year 2020, Volume: 2 Issue: 1, 26 - 47, 30.06.2020

Abstract

References

  • [1] M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-188.
  • [2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64(4)(2014), 941-960.
  • [3] H. Aydi, M-F. Bota, E. Karapınar and S. Mitrovic, A fixed point theorem for set-valued quasi contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
  • [4] G. V. R. Babu and G. N. Alemayehu, A common fixed point theorem for weakly contractive mappings satisfying property (E.A), Applied Mathematics E-Notes, 24(6)(2012), 975-981.
  • [5] G. V. R. Babu and T. M. Dula, Common fixed points of two pairs of selfmaps satisfying (E.A)- property in b-metric spaces using a new control function, Inter. J. Math. Appl., 5(1-B)(2017), 145-153.
  • [6] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal. Gos. Ped. Inst. Unianowsk, 30(1989), 26-37.
  • [7] V. Berinde, Iterative approximation of fixed points, Springer, 2006.
  • [8] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4(3)(2009), 285-301.
  • [9] M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8(2)(2010), 367-377.
  • [10] N. Bourbaki, Topologie Generale, Herman: Paris, France, 1974.
  • [11] L. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
  • [12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
  • [13] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico (DellUniv. di Modena), 46(1998), 263-276.
  • [14] B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure and Appl. Math., 6(1975), 1455-1458.
  • [15] D. Dukic, Z. Kadelburg and S. Radenovic, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal.,(2011), Article ID 561245, 13 pages.
  • [16] H. Faraji, D. Savic and S. Radenovic, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Axioms, 8(34)(2019), 12 pages.
  • [17] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40(1973), 604-608.
  • [18] H. Huang, G. Deng and S. Radenovic, Fixed point theorems for C-class functions in b-metric spaces and applications, J. Nonlinear Sci. Appl., 10(2017), 5853-5868.
  • [19] N. Hussain, V. Paraneh, J. R. Roshan and Z. Kadelburg, Fixed points of cycle weakly ( ; '; L; A;B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013(2013), 256, 18 pages.
  • [20] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(1986), 771-779.
  • [21] G. Jungck and B. E. Rhoades, Fixed points of set-valued functions without continuity, Indian J. Pure and Appl. Math., 29(3)(1998), 227-238.
  • [22] P. Kumam and W. Sintunavarat, The existence of fixed point theorems for partial q-set valued quasi-contractions in b-metric spaces and related results, Fixed point theory appl., 2014(2014): 226, 20 pages.
  • [23] A. Latif, V. Parvaneh, P. Salimi and A. E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 363-377.
  • [24] B. T. Leyew and M. Abbas, Fixed point results of generalized Suzuki-Geraghty contractions on f-orbitally complete b-metric spaces, U. P. B. Sci. Bull., Series A, 79(2)2017, 113-124.
  • [25] V. Ozturk and D. Turkoglu, Common fixed point theorems for mappings satisfying (E.A)-property in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 1127-1133.
  • [26] V. Ozturk and S. Radenovic, Some remarks on b-(E.A)-property in b-metric spaces, Springer Plus, 5(2016), 544, 10 pages.
  • [27] V. Ozturk and A. H. Ansari, Common fixed point theorems for mapping satisfying (E.A)-property via C-class functions in b-metric spaces, Appl. Gen. Topol., 18(1)(2017), 45-52.
  • [28] J. R. Roshan, V. Paraneh and Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7(4)(2014), 229-245.
  • [29] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinearcontractions in b-metric spaces, J. Math. Anal., 7(4)(2016), 1-12.
  • [30] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.
There are 30 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Dasari Ratna Babu 0000-0002-8734-7925

Publication Date June 30, 2020
Acceptance Date June 13, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.