Common fixed points of Geraghty-Suzuki type contraction maps in b-metric spaces
Year 2020,
Volume: 2 Issue: 1, 26 - 47, 30.06.2020
Dasari Ratna Babu
Abstract
In this paper, we prove the existence and uniqueness of common fixed points for two pairs of
selfmaps satisfying a Geraghty-Suzuki type contraction condition in which one pair is compatible,
b-continous and the another one is weakly compatible in complete b-metric spaces. Further, we
prove the same with different hypotheses on two pairs of selfmaps which satisfy b-(E.A)-property.
We draw some corollaries from our results and provide examples in support of our results
Supporting Institution
PSCMR CET, Vijayawada, Andhra Pradesh, India
Thanks
To
The Executive Editor,
Proceedings of International Mathematical Sciences
I am herewith submitting my research paper(PDF file) entitled ``Common fixed points of Geraghty-Suzuki type contraction maps in b-metric spaces"
Authors : G. V. R. Babu and D. Ratna Babu
for favor of publication in the journal `Proceedings of International Mathematical Sciences'.
Thanking you
Your sincerely
D. Ratna Babu
References
- [1] M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive
conditions, J. Math. Anal. Appl., 270(2002), 181-188.
- [2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive
mappings in partially ordered b-metric spaces, Math. Slovaca, 64(4)(2014), 941-960.
- [3] H. Aydi, M-F. Bota, E. Karapınar and S. Mitrovic, A fixed point theorem for set-valued quasi
contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
- [4] G. V. R. Babu and G. N. Alemayehu, A common fixed point theorem for weakly contractive
mappings satisfying property (E.A), Applied Mathematics E-Notes, 24(6)(2012), 975-981.
- [5] G. V. R. Babu and T. M. Dula, Common fixed points of two pairs of selfmaps satisfying (E.A)-
property in b-metric spaces using a new control function, Inter. J. Math. Appl., 5(1-B)(2017),
145-153.
- [6] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal. Gos. Ped.
Inst. Unianowsk, 30(1989), 26-37.
- [7] V. Berinde, Iterative approximation of fixed points, Springer, 2006.
- [8] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J.
Mod. Math., 4(3)(2009), 285-301.
- [9] M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J.
Math., 8(2)(2010), 367-377.
- [10] N. Bourbaki, Topologie Generale, Herman: Paris, France, 1974.
- [11] L. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45(1974),
267-273.
- [12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis,
1(1993), 5-11.
- [13] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario
Matematico e Fisico (DellUniv. di Modena), 46(1998), 263-276.
- [14] B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions,
Indian J. Pure and Appl. Math., 6(1975), 1455-1458.
- [15] D. Dukic, Z. Kadelburg and S. Radenovic, Fixed points of Geraghty-type mappings in various
generalized metric spaces, Abstr. Appl. Anal.,(2011), Article ID 561245, 13 pages.
- [16] H. Faraji, D. Savic and S. Radenovic, Fixed point theorems for Geraghty contraction type mappings
in b-metric spaces and applications, Axioms, 8(34)(2019), 12 pages.
- [17] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40(1973), 604-608.
- [18] H. Huang, G. Deng and S. Radenovic, Fixed point theorems for C-class functions in b-metric
spaces and applications, J. Nonlinear Sci. Appl., 10(2017), 5853-5868.
- [19] N. Hussain, V. Paraneh, J. R. Roshan and Z. Kadelburg, Fixed points of cycle weakly
( ; '; L; A;B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point
Theory Appl., 2013(2013), 256, 18 pages.
- [20] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci.,
9(1986), 771-779.
- [21] G. Jungck and B. E. Rhoades, Fixed points of set-valued functions without continuity, Indian J.
Pure and Appl. Math., 29(3)(1998), 227-238.
- [22] P. Kumam and W. Sintunavarat, The existence of fixed point theorems for partial q-set valued
quasi-contractions in b-metric spaces and related results, Fixed point theory appl., 2014(2014):
226, 20 pages.
- [23] A. Latif, V. Parvaneh, P. Salimi and A. E. Al-Mazrooei, Various Suzuki type theorems in b-metric
spaces, J. Nonlinear Sci. Appl., 8(2015), 363-377.
- [24] B. T. Leyew and M. Abbas, Fixed point results of generalized Suzuki-Geraghty contractions on
f-orbitally complete b-metric spaces, U. P. B. Sci. Bull., Series A, 79(2)2017, 113-124.
- [25] V. Ozturk and D. Turkoglu, Common fixed point theorems for mappings satisfying (E.A)-property
in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 1127-1133.
- [26] V. Ozturk and S. Radenovic, Some remarks on b-(E.A)-property in b-metric spaces, Springer Plus,
5(2016), 544, 10 pages.
- [27] V. Ozturk and A. H. Ansari, Common fixed point theorems for mapping satisfying (E.A)-property
via C-class functions in b-metric spaces, Appl. Gen. Topol., 18(1)(2017), 45-52.
- [28] J. R. Roshan, V. Paraneh and Z. Kadelburg, Common fixed point theorems for weakly isotone
increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7(4)(2014), 229-245.
- [29] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinearcontractions
in b-metric spaces, J. Math. Anal., 7(4)(2016), 1-12.
- [30] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness,
Proc. Amer. Math. Soc., 136(2008), 1861-1869.