Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 1, 5 - 16, 18.07.2023

Abstract

References

  • V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math. 35(3), (2019), 293-304.
  • V. Berinde, and M. P˘acurar, Fixed point theorems for enriched Ciric-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math., 37(2), (2021), 173-184.
  • B. K. Dass, and S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure and Appl. Math., 6 (1975), 1455-1458.
  • D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure and Appl. Math., 8(2), (1977), 223-230.
  • M. Aslantas, H. Sahin and D. Turkoglu, Some Caristi type fixed point theorems, The Journal of Analysis, 29(1), (2021), 89-103.
  • M. Aslantas, H. Sahin and U. Sadullah, Some generalizations for mixed multivalued mappings, Applied General Topology, 23(1), (2022), 169-178.

Fixed points of enriched contraction and almost enriched CRR contraction maps with rational expressions and convergence of fixed points

Year 2023, Volume: 5 Issue: 1, 5 - 16, 18.07.2023

Abstract

We define enriched Jaggi contraction map, enriched Dass and Gupta contraction map and almost (k, a, b, \lambda)-enriched CRR contraction maps with \lambda=\frac{1}{k+1} in Banach spaces and prove the existence and uniqueness of fixed points of these maps. Further, we show that the sequence of fixed points of
the corresponding enriched contraction maps converges to the fixed point of the uniform limit operator of these enriched contraction maps.

References

  • V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math. 35(3), (2019), 293-304.
  • V. Berinde, and M. P˘acurar, Fixed point theorems for enriched Ciric-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math., 37(2), (2021), 173-184.
  • B. K. Dass, and S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure and Appl. Math., 6 (1975), 1455-1458.
  • D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure and Appl. Math., 8(2), (1977), 223-230.
  • M. Aslantas, H. Sahin and D. Turkoglu, Some Caristi type fixed point theorems, The Journal of Analysis, 29(1), (2021), 89-103.
  • M. Aslantas, H. Sahin and U. Sadullah, Some generalizations for mixed multivalued mappings, Applied General Topology, 23(1), (2022), 169-178.
There are 6 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

G. V. R. Babu 0000-0002-6272-2645

Palla Mounıka 0000-0002-1920-3612

Early Pub Date July 17, 2023
Publication Date July 18, 2023
Acceptance Date July 7, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.