Research Article
BibTex RIS Cite

Sürdürülebilir Tasarımda Ahşap Yapılar: Yapay Zeka Tabanlı Enerji Verimliliği ve Çevresel Etki

Year 2025, Volume: 9 Issue: 1, 90 - 98, 15.03.2025
https://doi.org/10.54864/planarch.1586765

Abstract

Bu çalışma, ahşap yapıların yeşil bina tasarımlarına entegrasyonunu ve bu entegrasyonun sürdürülebilir mimarlık üzerindeki etkilerini analiz etmeyi amaçlamaktadır. Ahşap, yenilenebilir bir yapı malzemesi olarak düşük karbon ayak izi, enerji verimliliği ve çevresel sürdürülebilirlik gibi avantajlar sunmaktadır. Çalışma, ahşap yapıların termal performansını, enerji verimliliğini ve akustik özelliklerini inceleyerek, bu yapıların gelecekteki yeşil bina projelerinde sürdürülebilir bir çözüm olarak kullanım potansiyelini değerlendirmektedir. Araştırmada, Brock Commons Tallwood House (Kanada), Mjøstårnet (Norveç), Treet (Norveç), Forté Building (Avustralya) ve The Edge (Hollanda) gibi seçkin ahşap yapılar analiz edilmiştir. Bu yapılar üzerinde yapay zeka destekli simülasyonlar gerçekleştirilmiş ve termal performans, enerji verimliliği ve karbon depolama kapasiteleri açısından değerlendirmeler yapılmıştır. Yapay zeka yöntemleri, enerji verimliliğini optimize etmek ve çevresel etkileri azaltmak için kullanılmıştır. Örneğin, enerji modellemeleri için EnergyPlus yazılımı ve genetik algoritmalar gibi yapay zeka teknikleri kullanılarak binaların farklı iklim koşullarındaki performansı optimize edilmiştir. Yaşam Döngüsü Analizi (YDA) ile ahşap yapıların karbon depolama kapasitelerinin çelik ve beton gibi geleneksel malzemelere kıyasla üstün olduğu tespit edilmiştir. Sonuçlar, ahşap yapıların enerji tüketimini azaltarak ısıtma ve soğutma ihtiyaçlarını minimize ettiğini, akustik konforu artırdığını ve çevresel sürdürülebilirliğe katkı sağladığını göstermektedir. Özellikle Mjøstårnet ve The Edge gibi yapılar, hem karbon emisyonlarını azaltmada hem de enerji tasarrufunda örnek teşkil etmektedir.

References

  • Ben-Nakhi, A.E. & Mahmoud, M.A. (2004). Cooling Load Prediction for Buildings Using General Regression Neural Networks. Energy Conversion and Management, 45(11-12), 2127–2141. https://doi.org/10.1016/j.enconman.2003.10.009
  • Börjesson, P. & Gustavsson, L. (2000). Greenhouse Gas Balances in Building Construction: Wood Versus Concrete from Life-Cycle and Forest Land-Use Perspectives. Energy Policy, 28(9), 575-588. https://doi.org/10.1016/S0301-4215(00)00049-5
  • Buchanan, A.H. & Honey, B.G. (1994). Energy and Carbon Dioxide İmplications of Building Construction. Energy and Buildings, 20(3), 205-217. https://doi.org/10.1016/0378-7788(94)90024-8
  • Churkina, G. Organschi, A. Reyer, C.P. Ruff, A. Vinke, K. Liu, Z. & Schellnhuber, H.J. (2020). Buildings as a Global Carbon Sink. Nature Sustainability, 3(4), 269-276 https://doi.org/10.1038/s41893-019-0462-4
  • Congradac, V. & Kulic, F. (2009). Hvac System Optimization with CO2 Concentration Control Using Genetic Algorithms. Energy and Buildings, 41(5), 571–577. https://doi.org/10.1016/j.enbuild.2008.12.004
  • Crawford, R.H. & Cadorel, X. (2017). A Framework for Assessing the Environmental Benefits of Mass Timber Construction. Procedia Engineering, 196(1), 838-846. https://doi.org/ 10.1016/j.proeng.2017.08.015
  • Dahanayake, K.W.D. & Chow, C.L. (2017). Studying The Potential of Energy Saving Through Vertical Greenery Systems: Using Energyplus Simulation Program. Energy and Buildings, 138 (2017), 47–59. https://doi.org/10.1016/j.enbuild.2016.12.057
  • Dodoo, A. Gustavsson, L. & Sathre, R. (2014). Lifecycle Carbon İmplications of Conventional and Low-Energy Multi-Story Timber Building Systems. Energy and Buildings, 82 (2014), 194-204. https://doi.org/10.1016/j.enbuild.2014.06.034
  • Durlinger, B. Crossin, E. & Wong, J.P.C. (2013). Life Cycle Assessment Of A Cross Laminated Timber Building. Project number: PNA282-1112, Forest and Wood Products Australia.
  • Gagnon, S. & Pirvu, C. (2011). CLT Handbook: Cross-Laminated Timber. Canadian ed. Special Publication SP -528E. Quebec, QC: FPInnovations. 1v.
  • Gasparri, E. (2022). Unitized timber envelopes: The future generation of sustainable, high-performance, industrialized facades for construction decarbonization. In rethinking building skins: transformative technologies and research trajectories. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822477-9.00014-0
  • GBCA (Green Building Council of Australia). (2012). Forté Living by Lend Lease. Green Star Case Studies.
  • Ghahramani, A. Lehrer, D. Varghese, Z. & Pandit, Y. (2020). Artificial Intelligence for Efficient Thermal Comfort Systems: Requirements, Current Applications, And Future Directions. Frontiers in Built Environment, 6(49), 1-12. https://doi.org/10.3389/fbuil.2020.00049
  • Gossard, D. Lartigue, B. & Thellier, F. (2013). Multi-Objective Optimization of a Building Envelope for Thermal Performance Using Genetic Algorithms and Artificial Neural Network. Energy and Buildings, 67(2013), 253–260. https://doi.org/10.1016/j.enbuild.2013.08.026
  • Green, M. & Taggart, J. (2017). Tall wood buildings: Design, construction, and performance. Birkhäuser Publishing. https://doi.org/ 10.1515/9783035604764
  • Gustavsson, L. Haus, S. Lundblad, M. Lundstrom, A. Ortiz, C.A. Sathre, R. Le Truong, N. & Wikberg, P. (2017). Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renewable Sustainable Energy Reviewers, 67 (2017), 612-624. https://doi.org/10.1016/j.rser.2016.09.056
  • Gustavsson, L. Sathre, R. (2011). Energy And CO₂ Analysis of Wood Substitution in Construction. Energy and Buildings, 43(1), 61-68. https://doi.org/10.1007/s10584-010-9876-8
  • Harte, A.M. (2017). Mass Timber: The Emergence Of a Modern Construction Material. Journal of Structural Integrity and Maintenance, 2(3), 121-132. https://doi.org/ 10.1080/24705314.2017.1354156
  • Hashemi, S.S. Hajiagha, S.H.R. Zavadskas, E.K. & Mahdiraji, H. A. (2022). Multi-Objective Optimization for Energy Consumption, Visual and Thermal Comfort Performance of Educational Buildings. Sustainable Energy Technologies and Assessments, 54, 102872. https://doi.org/10.1016/j.seta.2021.102872
  • Khavari, A.M. Pei, S. & Tabares-Velasco, P.C. (2016). Energy Consumption Analysis of Multistory Cross-Laminated Timber Residential Buildings: A Comparative Study. Journal of Architectural Engineering, 22(2), 04016002. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000206
  • Kurtoglu, A., (1979), Yapıştırılmış Tabakalı Ağaç Malzemede Rutubet Değişimi Nedeniyle Gerilmelerin Oluşumu, İstanbul Üniversitesi Orman Fakültesi Dergisi, 29(2): 72-96. https://dergipark.org.tr/en/download/article-file/175304 (In Turkish).
  • Mahapatra, K. Gustavsson, L. & Hemström, K. (2012). Multi‐storey wood‐frame buildings in Germany, Sweden and the UK. Construction innovation, 12(1), 62-85.
  • Mallo, M.F.L. & Espinoza, O. (2015). Awareness, Perceptions and Willingness to Adopt Cross-Laminated Timber by The Architecture Community in The United States. Journal of Cleaner Production, 94 (2015), 198-210. https://doi.org/10.1016/j.jclepro.2015.01.090
  • Mayer, M.J. Szilágyi, A. & Gróf, G. (2020). Environmental And Economic Multi-Objective Optimization Of A Household Level Hybrid Renewable Energy System By Genetic Algorithm. Applied Energy, 269, 115058. https://doi.org/10.1016/j.apenergy.2020.115058
  • Merabet, G. H. Essaaidi, M. Ben Haddou, M. Qolomany, B. Qadir, J. Anan, M. Al-Fuqaha, A. Abid, M.R. & Benhaddou, D. (2021). Intelligent Building Control Systems for Thermal Comfort and Energy-Efficiency: A Systematic Review Of Artificial İntelligence-Assisted Techniques. Renewable and Sustainable Energy Reviews, 144, 110969. https://doi.org/10.1016/j.rser.2021.110969
  • Mi, Z.F. Pan, S.Y. Yu, H. & Wei, Y.M. (2015). Potential Impacts Of Industrial Structure On Energy Consumption And CO2 Emission: A Case Study Of Beijing. Journal of Cleaner Production, 103, 455-462. https://doi.org/10.1016/j.jclepro.2014.06.011
  • Motuzienė, V. & Džiugaitė-Tumėnienė, R. (2024). AI-Driven Innovations İn Building Energy Management Systems: A Review Of Potential Applications And Energy Savings. Energies, 17(17), 4277. https://doi.org/ 10.3390/en17174277
  • Oldfield, P. (2019). The Sustainable Tall Building. Taylor and Francis Group. https://doi.org/10.4324/9781315695686
  • Ooka, R. & Komamura, K. (2009). Optimal Design Method for Building Energy Systems Using Genetic Algorithms. Building and Environment, 44(8), 1538-1544. https://doi.org/10.1016/j.buildenv.2008.07.006
  • Østergård, T. Jensen, R. L. & Maagaard, S. E. (2016). Building Simulations Supporting Decision Making in Early Design: A Review. Renewable and Sustainable Energy Reviews, 61, 187-201. https://doi.org/ 10.1016/j.rser.2016.03.045
  • Peñaloza, D. Erlandsson, M. & Falk, A. (2016). Exploring The Climate Impact Effects Of Increased Use of Wood in European Construction. Journal of Cleaner Production, 125, 304-314. https://doi.org/ 10.1016/j.conbuildmat.2016.08.041
  • Pérez-García, J. Lippke, B. Comnick, J. & Manriquez, C. (2005). An Assessment of Carbon Pools, Storage, and Wood Products Market Substitution Using Life-Cycle Analysis Results. Wood and Fiber Science, 37, 140-148. https://wfs.swst.org/index.php/wfs/article/view/840
  • Pittau, F. Krause, F. Lumia, G. & Habert, G. (2018). Fast-Growing Bio-Based Materials as an Opportunity for Storing Carbon in Exterior Walls. Building and Environment, 129, 117-129. https://doi.org/10.1016/j.buildenv.2017.12.006
  • Ramage, M.H. Burridge, H. Busse-Wicher, M. Fereday, G. Reynolds, T. Shah, D. U. Wu, G. Yu, L. Fleming, P. Densley-Tingley, D. Allwood, J. Dupree, P. Linden, P.F. & Scherman, O. (2017). The Wood from the Trees: The Use of Timber in Construction. Renewable and sustainable energy reviews, 68 (1), 333-359. https://doi.org/10.1016/j.rser.2016.09.107
  • Rämäkkö, M. (2021). Life Cycle Assessment of Cross Laminated Timber (CLT) And Glued Laminated Timber (GLT) – Environmental İmpacts and Carbon Footprint in Different Building Types. Master's thesis, Tampere University, Finland.
  • Robertson, A. B. Lam, F.C.F. & Cole, R.J. (2012). A Comparative Cradle-To-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives. Buildings, 2(3), 245-270. https://doi.org/ 10.3390/buildings2030245
  • URL-1.https://mtcopeland.com/wp-content/uploads/2021/03/I4HGAynbQSOO16yJnmKw_MTCT_SEO_Glulam_01_HeadImage_1.jpg.webp (last access: 02.12.2024).
  • URL-2. Think Wood, retrieved from https://www.thinkwood.com/construction-projects/brock-commons-tallwood house (last access: 08.11.2024).
  • URL-3. AEWORLDMAP, retrieved from https://aeworldmap.com/2017/04/03/30880/ (last access: 10.11.2024).
  • URL-4. Architecture & Design, retrieved from https://www.architectureanddesign.com.au/projects/multi-residential/forte-by-lend-lease (last access: 10.11.2024).
  • URL-5. Arch Daily, retrieved from https://www.archdaily.com/934374/mjostarnet-the-tower-of-lake-mjosa-voll-arkitekter/5e5436526ee67e943b000079-mjostarnet-the-tower-of-lake-mjosa-voll-arkitekter-photo (last access: 09.11.2024).
  • URL-6. World Green Building Council, retrieved from https://www.worldgbc.org/ (last access: 07.08.2020).
  • Wang, L., Chen, S. S., Tsang, D. C., Poon, C. S., & Shih, K. (2016). Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. Journal of Cleaner Production, 137 (2016), 861-870. https://doi.org/10.1016/j.jclepro.2016.07.180
  • Yan, D. Guo, Y. Yang, W. & Guo, R. (2023). Simulating Building Energy Consumption İn The Era of Artificial İntelligence: A Review of Advanced Technologies. Advances in Applied Energy, 11, 100135. https://doi.org/10.1016/j.adapen.2023.100135
  • Zhigulina, A. Y. & Ponomarenko, A. M. (2018). Energy Efficiency of High-Rise Buildings, 2 Engineering Systems and Building Materials, Samara, Russia, 06 March 2018, vol. 33, p. 1-6 https://doi.org/ 10.1051/e3sconf/20183302003

Wooden Structures in Sustainable Design: AI-Based Energy Efficiency and Environmental Impact

Year 2025, Volume: 9 Issue: 1, 90 - 98, 15.03.2025
https://doi.org/10.54864/planarch.1586765

Abstract

This study aims to analyze the integration of wooden structures into green building designs and the effects of this integration on sustainable architecture. Wood, as a renewable building material, offers advantages such as low carbon footprint, energy efficiency and environmental sustainability. The study examines the thermal performance, energy efficiency and acoustic properties of wooden structures and evaluates the potential of these structures as a sustainable solution in future green building projects. In the study, select wooden structures such as Brock Commons Tallwood House (Canada), Mjøstårnet (Norway), Treet (Norway), Forté Building (Australia) and The Edge (Netherlands) were analyzed. Artificial intelligence-supported simulations were performed on these structures and evaluations were made in terms of thermal performance, energy efficiency and carbon storage capacity. Artificial intelligence methods were used to optimize energy efficiency and reduce environmental impacts. For example, EnergyPlus software and artificial intelligence techniques such as genetic algorithms were used for energy modeling to optimize the performance of buildings in different climatic conditions. Life Cycle Analysis (LCA) has determined that the carbon storage capacity of wooden structures is superior to traditional materials such as steel and concrete. The results show that wooden structures reduce energy consumption, minimize heating and cooling needs, increase acoustic comfort and contribute to environmental sustainability. In particular, structures such as Mjøstårnet and The Edge are exemplary in both reducing carbon emissions and saving energy.

References

  • Ben-Nakhi, A.E. & Mahmoud, M.A. (2004). Cooling Load Prediction for Buildings Using General Regression Neural Networks. Energy Conversion and Management, 45(11-12), 2127–2141. https://doi.org/10.1016/j.enconman.2003.10.009
  • Börjesson, P. & Gustavsson, L. (2000). Greenhouse Gas Balances in Building Construction: Wood Versus Concrete from Life-Cycle and Forest Land-Use Perspectives. Energy Policy, 28(9), 575-588. https://doi.org/10.1016/S0301-4215(00)00049-5
  • Buchanan, A.H. & Honey, B.G. (1994). Energy and Carbon Dioxide İmplications of Building Construction. Energy and Buildings, 20(3), 205-217. https://doi.org/10.1016/0378-7788(94)90024-8
  • Churkina, G. Organschi, A. Reyer, C.P. Ruff, A. Vinke, K. Liu, Z. & Schellnhuber, H.J. (2020). Buildings as a Global Carbon Sink. Nature Sustainability, 3(4), 269-276 https://doi.org/10.1038/s41893-019-0462-4
  • Congradac, V. & Kulic, F. (2009). Hvac System Optimization with CO2 Concentration Control Using Genetic Algorithms. Energy and Buildings, 41(5), 571–577. https://doi.org/10.1016/j.enbuild.2008.12.004
  • Crawford, R.H. & Cadorel, X. (2017). A Framework for Assessing the Environmental Benefits of Mass Timber Construction. Procedia Engineering, 196(1), 838-846. https://doi.org/ 10.1016/j.proeng.2017.08.015
  • Dahanayake, K.W.D. & Chow, C.L. (2017). Studying The Potential of Energy Saving Through Vertical Greenery Systems: Using Energyplus Simulation Program. Energy and Buildings, 138 (2017), 47–59. https://doi.org/10.1016/j.enbuild.2016.12.057
  • Dodoo, A. Gustavsson, L. & Sathre, R. (2014). Lifecycle Carbon İmplications of Conventional and Low-Energy Multi-Story Timber Building Systems. Energy and Buildings, 82 (2014), 194-204. https://doi.org/10.1016/j.enbuild.2014.06.034
  • Durlinger, B. Crossin, E. & Wong, J.P.C. (2013). Life Cycle Assessment Of A Cross Laminated Timber Building. Project number: PNA282-1112, Forest and Wood Products Australia.
  • Gagnon, S. & Pirvu, C. (2011). CLT Handbook: Cross-Laminated Timber. Canadian ed. Special Publication SP -528E. Quebec, QC: FPInnovations. 1v.
  • Gasparri, E. (2022). Unitized timber envelopes: The future generation of sustainable, high-performance, industrialized facades for construction decarbonization. In rethinking building skins: transformative technologies and research trajectories. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822477-9.00014-0
  • GBCA (Green Building Council of Australia). (2012). Forté Living by Lend Lease. Green Star Case Studies.
  • Ghahramani, A. Lehrer, D. Varghese, Z. & Pandit, Y. (2020). Artificial Intelligence for Efficient Thermal Comfort Systems: Requirements, Current Applications, And Future Directions. Frontiers in Built Environment, 6(49), 1-12. https://doi.org/10.3389/fbuil.2020.00049
  • Gossard, D. Lartigue, B. & Thellier, F. (2013). Multi-Objective Optimization of a Building Envelope for Thermal Performance Using Genetic Algorithms and Artificial Neural Network. Energy and Buildings, 67(2013), 253–260. https://doi.org/10.1016/j.enbuild.2013.08.026
  • Green, M. & Taggart, J. (2017). Tall wood buildings: Design, construction, and performance. Birkhäuser Publishing. https://doi.org/ 10.1515/9783035604764
  • Gustavsson, L. Haus, S. Lundblad, M. Lundstrom, A. Ortiz, C.A. Sathre, R. Le Truong, N. & Wikberg, P. (2017). Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renewable Sustainable Energy Reviewers, 67 (2017), 612-624. https://doi.org/10.1016/j.rser.2016.09.056
  • Gustavsson, L. Sathre, R. (2011). Energy And CO₂ Analysis of Wood Substitution in Construction. Energy and Buildings, 43(1), 61-68. https://doi.org/10.1007/s10584-010-9876-8
  • Harte, A.M. (2017). Mass Timber: The Emergence Of a Modern Construction Material. Journal of Structural Integrity and Maintenance, 2(3), 121-132. https://doi.org/ 10.1080/24705314.2017.1354156
  • Hashemi, S.S. Hajiagha, S.H.R. Zavadskas, E.K. & Mahdiraji, H. A. (2022). Multi-Objective Optimization for Energy Consumption, Visual and Thermal Comfort Performance of Educational Buildings. Sustainable Energy Technologies and Assessments, 54, 102872. https://doi.org/10.1016/j.seta.2021.102872
  • Khavari, A.M. Pei, S. & Tabares-Velasco, P.C. (2016). Energy Consumption Analysis of Multistory Cross-Laminated Timber Residential Buildings: A Comparative Study. Journal of Architectural Engineering, 22(2), 04016002. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000206
  • Kurtoglu, A., (1979), Yapıştırılmış Tabakalı Ağaç Malzemede Rutubet Değişimi Nedeniyle Gerilmelerin Oluşumu, İstanbul Üniversitesi Orman Fakültesi Dergisi, 29(2): 72-96. https://dergipark.org.tr/en/download/article-file/175304 (In Turkish).
  • Mahapatra, K. Gustavsson, L. & Hemström, K. (2012). Multi‐storey wood‐frame buildings in Germany, Sweden and the UK. Construction innovation, 12(1), 62-85.
  • Mallo, M.F.L. & Espinoza, O. (2015). Awareness, Perceptions and Willingness to Adopt Cross-Laminated Timber by The Architecture Community in The United States. Journal of Cleaner Production, 94 (2015), 198-210. https://doi.org/10.1016/j.jclepro.2015.01.090
  • Mayer, M.J. Szilágyi, A. & Gróf, G. (2020). Environmental And Economic Multi-Objective Optimization Of A Household Level Hybrid Renewable Energy System By Genetic Algorithm. Applied Energy, 269, 115058. https://doi.org/10.1016/j.apenergy.2020.115058
  • Merabet, G. H. Essaaidi, M. Ben Haddou, M. Qolomany, B. Qadir, J. Anan, M. Al-Fuqaha, A. Abid, M.R. & Benhaddou, D. (2021). Intelligent Building Control Systems for Thermal Comfort and Energy-Efficiency: A Systematic Review Of Artificial İntelligence-Assisted Techniques. Renewable and Sustainable Energy Reviews, 144, 110969. https://doi.org/10.1016/j.rser.2021.110969
  • Mi, Z.F. Pan, S.Y. Yu, H. & Wei, Y.M. (2015). Potential Impacts Of Industrial Structure On Energy Consumption And CO2 Emission: A Case Study Of Beijing. Journal of Cleaner Production, 103, 455-462. https://doi.org/10.1016/j.jclepro.2014.06.011
  • Motuzienė, V. & Džiugaitė-Tumėnienė, R. (2024). AI-Driven Innovations İn Building Energy Management Systems: A Review Of Potential Applications And Energy Savings. Energies, 17(17), 4277. https://doi.org/ 10.3390/en17174277
  • Oldfield, P. (2019). The Sustainable Tall Building. Taylor and Francis Group. https://doi.org/10.4324/9781315695686
  • Ooka, R. & Komamura, K. (2009). Optimal Design Method for Building Energy Systems Using Genetic Algorithms. Building and Environment, 44(8), 1538-1544. https://doi.org/10.1016/j.buildenv.2008.07.006
  • Østergård, T. Jensen, R. L. & Maagaard, S. E. (2016). Building Simulations Supporting Decision Making in Early Design: A Review. Renewable and Sustainable Energy Reviews, 61, 187-201. https://doi.org/ 10.1016/j.rser.2016.03.045
  • Peñaloza, D. Erlandsson, M. & Falk, A. (2016). Exploring The Climate Impact Effects Of Increased Use of Wood in European Construction. Journal of Cleaner Production, 125, 304-314. https://doi.org/ 10.1016/j.conbuildmat.2016.08.041
  • Pérez-García, J. Lippke, B. Comnick, J. & Manriquez, C. (2005). An Assessment of Carbon Pools, Storage, and Wood Products Market Substitution Using Life-Cycle Analysis Results. Wood and Fiber Science, 37, 140-148. https://wfs.swst.org/index.php/wfs/article/view/840
  • Pittau, F. Krause, F. Lumia, G. & Habert, G. (2018). Fast-Growing Bio-Based Materials as an Opportunity for Storing Carbon in Exterior Walls. Building and Environment, 129, 117-129. https://doi.org/10.1016/j.buildenv.2017.12.006
  • Ramage, M.H. Burridge, H. Busse-Wicher, M. Fereday, G. Reynolds, T. Shah, D. U. Wu, G. Yu, L. Fleming, P. Densley-Tingley, D. Allwood, J. Dupree, P. Linden, P.F. & Scherman, O. (2017). The Wood from the Trees: The Use of Timber in Construction. Renewable and sustainable energy reviews, 68 (1), 333-359. https://doi.org/10.1016/j.rser.2016.09.107
  • Rämäkkö, M. (2021). Life Cycle Assessment of Cross Laminated Timber (CLT) And Glued Laminated Timber (GLT) – Environmental İmpacts and Carbon Footprint in Different Building Types. Master's thesis, Tampere University, Finland.
  • Robertson, A. B. Lam, F.C.F. & Cole, R.J. (2012). A Comparative Cradle-To-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives. Buildings, 2(3), 245-270. https://doi.org/ 10.3390/buildings2030245
  • URL-1.https://mtcopeland.com/wp-content/uploads/2021/03/I4HGAynbQSOO16yJnmKw_MTCT_SEO_Glulam_01_HeadImage_1.jpg.webp (last access: 02.12.2024).
  • URL-2. Think Wood, retrieved from https://www.thinkwood.com/construction-projects/brock-commons-tallwood house (last access: 08.11.2024).
  • URL-3. AEWORLDMAP, retrieved from https://aeworldmap.com/2017/04/03/30880/ (last access: 10.11.2024).
  • URL-4. Architecture & Design, retrieved from https://www.architectureanddesign.com.au/projects/multi-residential/forte-by-lend-lease (last access: 10.11.2024).
  • URL-5. Arch Daily, retrieved from https://www.archdaily.com/934374/mjostarnet-the-tower-of-lake-mjosa-voll-arkitekter/5e5436526ee67e943b000079-mjostarnet-the-tower-of-lake-mjosa-voll-arkitekter-photo (last access: 09.11.2024).
  • URL-6. World Green Building Council, retrieved from https://www.worldgbc.org/ (last access: 07.08.2020).
  • Wang, L., Chen, S. S., Tsang, D. C., Poon, C. S., & Shih, K. (2016). Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. Journal of Cleaner Production, 137 (2016), 861-870. https://doi.org/10.1016/j.jclepro.2016.07.180
  • Yan, D. Guo, Y. Yang, W. & Guo, R. (2023). Simulating Building Energy Consumption İn The Era of Artificial İntelligence: A Review of Advanced Technologies. Advances in Applied Energy, 11, 100135. https://doi.org/10.1016/j.adapen.2023.100135
  • Zhigulina, A. Y. & Ponomarenko, A. M. (2018). Energy Efficiency of High-Rise Buildings, 2 Engineering Systems and Building Materials, Samara, Russia, 06 March 2018, vol. 33, p. 1-6 https://doi.org/ 10.1051/e3sconf/20183302003
There are 45 citations in total.

Details

Primary Language English
Subjects Sustainable Architecture
Journal Section Research Articles
Authors

Mustafa Küçüktüvek 0000-0002-5354-359X

Çağlar Altay 0000-0003-1286-8600

Early Pub Date March 16, 2025
Publication Date March 15, 2025
Submission Date November 17, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Küçüktüvek, M., & Altay, Ç. (2025). Wooden Structures in Sustainable Design: AI-Based Energy Efficiency and Environmental Impact. PLANARCH - Design and Planning Research, 9(1), 90-98. https://doi.org/10.54864/planarch.1586765

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929