Research Article
BibTex RIS Cite

Numerical Investigation of The Effect of Nanofluids Used in A Tube Heat Exchanger on Thermal and Hydraulic Performance

Year 2024, , 313 - 328, 29.02.2024
https://doi.org/10.2339/politeknik.1011690

Abstract

Energy is one of the world's critical resources. For this reason, energy saving and efficiency is an important study subject. In order to save energy, there are theoretical and experimental studies in the literature due to the need for the improvement of heat transfer and the compactness of the heat exchangers, and the search for new fluids that will provide heat transfer improvement instead of the traditional fluids used in heat exchangers.In this study, the nanofluids obtained by changing the ratios of Al2O3 and SiO2 high nanoparticles volume fraction instead of low nanoparticles volume fraction and by changing the ratios of the base fluid ethylene glycol-water mixtures, where efficient results were obtained in providing heat transfer improvement, the thermal and hydraulic performance of a concentric, intertwined, parallel and counter flow in a tubular heat exchanger, using hot and cold fluids at different volumetric flows, was investigated numerically. Water on the hot fluid side, 0:100%, 40:60%, 60:40% and 100:0% on the cold fluid side, into different ratios of EG-water at 0%, 2%, 4%, 6% nanoparticles volume fractions and different Reynolds numbers (6000 – 8000 – 12000 – 16000 - 20000) nanofluids obtained by adding Al2O3 and SiO2 nanoparticles were used. According to the results of numerical studies, when the fixed volumetric flow value of hot fluid water is 3 l/min, the constant volumetric flow value of nanofluids is 0.9 l/min and Reynolds number 20000, Al2O3-100:0% EG/water and SiO2-100:0% EG/water. The Nusselt number of nanofluids increased by 15.4% and 9.1%, respectively, compared to 0:100% EG/water. The results showed that the pressure drop in a counter flow tubular heat exchanger is high, as well as the heat exchanger performance is better than the parallel flow, the Nusselt number increases with the solid volume concentration contained in the nanofluid, and both the 0:100% ratio and the SiO2 of the Al2O3-100:0% EG/water nanofluid. SiO2 -100:0% EG/water indicates that it is more effective in increasing the performance of the heat exchanger compared to nanofluid.

References

  • [1] Choi S.U.S., Eastman J.A.,“Enhancing thermal conductivity of fluids with nanoparticles”, Argonne National Lab., ANL/MSD/CP-84938, (1995).
  • [2] Chein R. and Chuang J., “Experimental microchannel heat sink performance studies using nanofluids”, International Journal of Thermal Sciences, 46,(1): 57-66, (2007).
  • [3] Lee J. and Mudawar I., “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels”, International Journal of Heat and Mass Transfer, 50, 452- 463, (2007).
  • [4] Trisaksri V. and Wongwises S., “Critical review of heat transfer characteristics of nanofluids”, Renewable and Sustainable Energy Reviews, 11(3), 512-523, (2007).
  • [5] Wang X. and Mujumdar A.S., “Heat transfer characteristics of nanofluids: a review”, International Journal of Thermal Sciences, 46, 11-19, (2007).
  • [6] Daungthongsuk W. and Wongwises S., “A critical review of convective heat transfer of nanofluids”, Renewable and Sustainable Energy Reviews, 11, 797-817, (2007).
  • [7] Choi S.U.S., Wang X. and Xu X., Thermal conductivity of nanoparticle-fluid mixture, Journals of Thermophysics and Heat Transfer, 13(4), 474-480, (1999).
  • [8] Farajollahi B., Etemad S.G., Hojjat M., “Heat transfer of nanofluids in a shell and tubeheat exchanger”, International Journal of Heat and Mass Transfer, 53 12–17, (2010).
  • [9] Zamzamian S., Oskouie N., Doosthoseini A., Joneidi A., “Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al(2)O(3)/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow”, Experimental Thermal and Fluid Science, 35(3), 495–502, (2011).
  • [10] Pantzalia M.N., Kanarisa A.G., Antoniadisb K.D., Mouza A.A.,Paras S.V.,” Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface”, International Journal Heat and Fluid Flow, 30, 691-699, (2009).
  • [11] Abed A.M., Alghoul M.A., Sopian K., Mohammed H.A. and Majdi H., “Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids”, Chemical Engineering and Processing, 87, 88–103, (2015).
  • [12] Tiwari A. K., Ghosh P. and Sarkar J., “Performance comparison of the Plate Heat Exchanger using Different Nanofluids”, Experimental Thermal and Fluid Science, 49, 141-151, (2013).
  • [13] Aghabozorg M.H., Rashidi A. and Mohammadi S., Experimental Thermal and Fluid Science, 72, 182–189, (2016).
  • [14]. Kim, D., et al., “Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions”, Current Applied Physics, 9(2), 119-123, (2009).
  • [15] Liu Z.H., Li Y.Y., Bao R., “Thermal performance of inclined grooved heat pipes using nanofluid”, International Journal of Thermal Sciences, 49(9), 1680–1687, (2010).
  • [16] Heris S.Z., Esfahany M.N., Etemad S.G.,” Experimental investigation of convective heat transfer of Al2O3/water nanofluid in a circular tube,” International Journal Heat and Fluid Flow, 28, 203–210, (2007).
  • [17] Pak B.C., Cho Y.I., “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Experimental Heat Transfer an International Journal, 11(2), 151-170, (1998).
  • [18] Huminic G., Huminic A., Morjan I., Dumitrache F., “Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles”, International Journal of Heat and Mass Transfer, 54(1-3): 656-661, (2011).
  • [19] Alasadi M., Albadr J., Tayal S., “Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations”, Case Studies in Thermal Engineering, 1, 38-44, (2013).
  • [20] Parameswara B. , Nageswara V., Ramana Murthy Naidu S.C.V., Veeraiah T., “Heat Transfer Enhancement in Double Pipe Heat Exchanger by Alumina – Water Nanofluid, International Research Journal of Engineering and Technology (IRJET), 5, (3), 4060-4064, (2018).
  • [21] Ding Z., Qi C., Luo T., Wang Y., Tu J., Wang C., “Numerical simulation of nanofluids forced convection in a corrugated double-pipe heat exchanger”, Can. J. Chem. Eng., 1–11, https://doi.org/10.1002/cjce.24267 (2021).
  • [22] Keya S:T., Yeasmin S., Rahman M.M., Karim M.F., Amin M.R., “Mixed convection heat transfer in a lid-driven enclosure with a double-pipe heat exchanger”, International Journal of Thermofluids, 13, 100131, (2022).
  • [23] Singh S.K., Sarkar J., “Improvement in energy performance of tubular heat exchangers using nanofluids a review”, Current Nanoscience, 16, 136-156, (2020).
  • [24] Gurbuz E.Y., Özen A.,Variyenli H.İ. , Khanlari A., Tuncer A.D., “A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates”, Journal of the Brazilian Society of Mech. Sci. and Eng., 42, 10, (2020).
  • [25] Çiftçi E., Sözen A., ve Karaman E., “TiO2 içeren nanoakışkan kullanımının ısı borusu performansına etkisinin deneysel olarak incelenmesi”, Politeknik Dergisi,19(3): 367–376, (2016).
  • [26] Kumar N., Sonawane S.S., Sonawane S.H.,, “Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid”, International Communications in Heat and Mass Transfer 90, 1–10, (2018).
  • [27] ANSYS Fluent User's Guide Canonsburg, Fluent Inc., (2013).
  • [28] Brinkman H.C., “The viscosity of concentrated suspensions and solutions”, Journal of Chemical Physics, 4, 571–581, (1952).
  • [29] Xuan, Y. and Roetzel, W., “conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43,3701–3707, (2000).
  • [30] Yu W. and Choi S.U.S., “The role of ınterfacial layer in the enhanced thermal conductivity of nanofluids: a renovated maxwell model”, J Nanoparticles Res., 5, 167–171, (2003).
  • [31] Pethukov B.S., “Heat transfer and friction in turbulent pipe flow with variable physical properties”, Advances in Heat Transfer, 6,503- 565, (1970).
  • [32] Dilki, S., “Borulu Isı Değiştiricilerinde Kullanılan Nanoakışkanların Isı Transfer Karakteristiklerinin Sayısal Olarak İncelenmesi”, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, (2020).
  • [33] Baby S., Jonhson J., “Numerical ınvestigation on the heat transfer characteristics of alumina-water nanofluid in a double pipe heat exchanger”, International Research Journal of Engineering and Technology (IRJET), 5(3),3976-3983, (2018).

Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi

Year 2024, , 313 - 328, 29.02.2024
https://doi.org/10.2339/politeknik.1011690

Abstract

Enerji dünyanın kritik kaynaklarının başında gelmektedir. Bu sebeple enerji tasarrufu ve verimlilik önemli bir çalışma konusudur. Enerji tasarrufunun sağlanabilmesi için ısı transferinin iyileştirilmesi ile ısı değiştiricilerin kompaktlığı gibi ihtiyaçların doğması ile ısı değiştiricilerde kullanılan geleneksel akışkanların yerine ısı transferi iyileştirmesini sağlayacak yeni akışkan arayışı sebebiyle literatürde teorik ve deneysel çalışmalar bulunmaktadır. Bu çalışmada ısı transferi iyileştirmesinin sağlanmasında verimli sonuçların elde edildiği Al2O3 ve SiO2 nanoparçacıklarının düşük katı hacim yerine yüksek katı hacim oranlarında ve temel akışkan etilen glikol-su karışımlarının oranları değiştirilerek farklı hacimsel debilerde sıcak ve soğuk akışkanların kullanıldığı, eş merkezli, iç içe borulu, paralel ve zıt akışlı bir ısı değiştiricinin ısıl ve hidrolik performansı sayısal olarak incelenmiştir. Sıcak akışkan tarafında su, soğuk akışkan tarafında %0:100, %40:60, %60:40 ve %100:0 olmak üzere farklı oranlardaki etilen glikol-su karışımı içerisine %0, %2, %4, %6 katı hacim konsantrasyonlarında ve farklı Reynolds sayılarında (6000 – 8000 – 12000 – 16000 - 20000) Al2O3 ve SiO2 nanoparçacıkların eklenmesiyle elde edilen nanoakışkanlar kullanılmıştır. Sayısal çalışmaların sonuçlarına göre, zıt akış altında sıcak akışkan olan suyun sabit hacimsel debi değeri 3 l/dk, nanoakışkanların sabit hacimsel debi değeri 0,9 l/dk ve Reynolds sayısı 20000 alındığında, %6 katı hacim oranı için Al2O3-%100:0 EG/su ve SiO2-%100:0 EG/su nanoakışkanlarının Nusselt sayısında, %0:100 EG/su oranına kıyasla sırasıyla %15,4 ve %9,1 oranında artış olmuştur. Sonuçlar, zıt akışlı bir ısı değiştiricideki basınç düşümünün yüksek değerlerde olmasının yanında, Isı değiştirici performasının paralel akışa göre daha iyi olduğunu, nanoakışkanın içerdiği katı hacim oranın artmasıyla Nusselt sayısının arttığını ve Al2O3-%100:0 EG/su nanoakışkanının hem %0:100 EG/su oranına hem de SiO2- %100:0 EG/su nanoakışkanına göre ssı değiştiricinin performansını artırmada daha etkili olduğunu göstermektedir.

References

  • [1] Choi S.U.S., Eastman J.A.,“Enhancing thermal conductivity of fluids with nanoparticles”, Argonne National Lab., ANL/MSD/CP-84938, (1995).
  • [2] Chein R. and Chuang J., “Experimental microchannel heat sink performance studies using nanofluids”, International Journal of Thermal Sciences, 46,(1): 57-66, (2007).
  • [3] Lee J. and Mudawar I., “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels”, International Journal of Heat and Mass Transfer, 50, 452- 463, (2007).
  • [4] Trisaksri V. and Wongwises S., “Critical review of heat transfer characteristics of nanofluids”, Renewable and Sustainable Energy Reviews, 11(3), 512-523, (2007).
  • [5] Wang X. and Mujumdar A.S., “Heat transfer characteristics of nanofluids: a review”, International Journal of Thermal Sciences, 46, 11-19, (2007).
  • [6] Daungthongsuk W. and Wongwises S., “A critical review of convective heat transfer of nanofluids”, Renewable and Sustainable Energy Reviews, 11, 797-817, (2007).
  • [7] Choi S.U.S., Wang X. and Xu X., Thermal conductivity of nanoparticle-fluid mixture, Journals of Thermophysics and Heat Transfer, 13(4), 474-480, (1999).
  • [8] Farajollahi B., Etemad S.G., Hojjat M., “Heat transfer of nanofluids in a shell and tubeheat exchanger”, International Journal of Heat and Mass Transfer, 53 12–17, (2010).
  • [9] Zamzamian S., Oskouie N., Doosthoseini A., Joneidi A., “Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al(2)O(3)/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow”, Experimental Thermal and Fluid Science, 35(3), 495–502, (2011).
  • [10] Pantzalia M.N., Kanarisa A.G., Antoniadisb K.D., Mouza A.A.,Paras S.V.,” Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface”, International Journal Heat and Fluid Flow, 30, 691-699, (2009).
  • [11] Abed A.M., Alghoul M.A., Sopian K., Mohammed H.A. and Majdi H., “Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids”, Chemical Engineering and Processing, 87, 88–103, (2015).
  • [12] Tiwari A. K., Ghosh P. and Sarkar J., “Performance comparison of the Plate Heat Exchanger using Different Nanofluids”, Experimental Thermal and Fluid Science, 49, 141-151, (2013).
  • [13] Aghabozorg M.H., Rashidi A. and Mohammadi S., Experimental Thermal and Fluid Science, 72, 182–189, (2016).
  • [14]. Kim, D., et al., “Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions”, Current Applied Physics, 9(2), 119-123, (2009).
  • [15] Liu Z.H., Li Y.Y., Bao R., “Thermal performance of inclined grooved heat pipes using nanofluid”, International Journal of Thermal Sciences, 49(9), 1680–1687, (2010).
  • [16] Heris S.Z., Esfahany M.N., Etemad S.G.,” Experimental investigation of convective heat transfer of Al2O3/water nanofluid in a circular tube,” International Journal Heat and Fluid Flow, 28, 203–210, (2007).
  • [17] Pak B.C., Cho Y.I., “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Experimental Heat Transfer an International Journal, 11(2), 151-170, (1998).
  • [18] Huminic G., Huminic A., Morjan I., Dumitrache F., “Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles”, International Journal of Heat and Mass Transfer, 54(1-3): 656-661, (2011).
  • [19] Alasadi M., Albadr J., Tayal S., “Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations”, Case Studies in Thermal Engineering, 1, 38-44, (2013).
  • [20] Parameswara B. , Nageswara V., Ramana Murthy Naidu S.C.V., Veeraiah T., “Heat Transfer Enhancement in Double Pipe Heat Exchanger by Alumina – Water Nanofluid, International Research Journal of Engineering and Technology (IRJET), 5, (3), 4060-4064, (2018).
  • [21] Ding Z., Qi C., Luo T., Wang Y., Tu J., Wang C., “Numerical simulation of nanofluids forced convection in a corrugated double-pipe heat exchanger”, Can. J. Chem. Eng., 1–11, https://doi.org/10.1002/cjce.24267 (2021).
  • [22] Keya S:T., Yeasmin S., Rahman M.M., Karim M.F., Amin M.R., “Mixed convection heat transfer in a lid-driven enclosure with a double-pipe heat exchanger”, International Journal of Thermofluids, 13, 100131, (2022).
  • [23] Singh S.K., Sarkar J., “Improvement in energy performance of tubular heat exchangers using nanofluids a review”, Current Nanoscience, 16, 136-156, (2020).
  • [24] Gurbuz E.Y., Özen A.,Variyenli H.İ. , Khanlari A., Tuncer A.D., “A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates”, Journal of the Brazilian Society of Mech. Sci. and Eng., 42, 10, (2020).
  • [25] Çiftçi E., Sözen A., ve Karaman E., “TiO2 içeren nanoakışkan kullanımının ısı borusu performansına etkisinin deneysel olarak incelenmesi”, Politeknik Dergisi,19(3): 367–376, (2016).
  • [26] Kumar N., Sonawane S.S., Sonawane S.H.,, “Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid”, International Communications in Heat and Mass Transfer 90, 1–10, (2018).
  • [27] ANSYS Fluent User's Guide Canonsburg, Fluent Inc., (2013).
  • [28] Brinkman H.C., “The viscosity of concentrated suspensions and solutions”, Journal of Chemical Physics, 4, 571–581, (1952).
  • [29] Xuan, Y. and Roetzel, W., “conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43,3701–3707, (2000).
  • [30] Yu W. and Choi S.U.S., “The role of ınterfacial layer in the enhanced thermal conductivity of nanofluids: a renovated maxwell model”, J Nanoparticles Res., 5, 167–171, (2003).
  • [31] Pethukov B.S., “Heat transfer and friction in turbulent pipe flow with variable physical properties”, Advances in Heat Transfer, 6,503- 565, (1970).
  • [32] Dilki, S., “Borulu Isı Değiştiricilerinde Kullanılan Nanoakışkanların Isı Transfer Karakteristiklerinin Sayısal Olarak İncelenmesi”, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, (2020).
  • [33] Baby S., Jonhson J., “Numerical ınvestigation on the heat transfer characteristics of alumina-water nanofluid in a double pipe heat exchanger”, International Research Journal of Engineering and Technology (IRJET), 5(3),3976-3983, (2018).
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Elif Öğüt 0000-0002-5647-4040

Seda Dilki 0000-0001-7983-0952

Publication Date February 29, 2024
Submission Date October 18, 2021
Published in Issue Year 2024

Cite

APA Öğüt, E., & Dilki, S. (2024). Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi, 27(1), 313-328. https://doi.org/10.2339/politeknik.1011690
AMA Öğüt E, Dilki S. Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi. February 2024;27(1):313-328. doi:10.2339/politeknik.1011690
Chicago Öğüt, Elif, and Seda Dilki. “Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl Ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi”. Politeknik Dergisi 27, no. 1 (February 2024): 313-28. https://doi.org/10.2339/politeknik.1011690.
EndNote Öğüt E, Dilki S (February 1, 2024) Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi 27 1 313–328.
IEEE E. Öğüt and S. Dilki, “Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi”, Politeknik Dergisi, vol. 27, no. 1, pp. 313–328, 2024, doi: 10.2339/politeknik.1011690.
ISNAD Öğüt, Elif - Dilki, Seda. “Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl Ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi”. Politeknik Dergisi 27/1 (February 2024), 313-328. https://doi.org/10.2339/politeknik.1011690.
JAMA Öğüt E, Dilki S. Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi. 2024;27:313–328.
MLA Öğüt, Elif and Seda Dilki. “Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl Ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi”. Politeknik Dergisi, vol. 27, no. 1, 2024, pp. 313-28, doi:10.2339/politeknik.1011690.
Vancouver Öğüt E, Dilki S. Borulu Bir Isı Değiştiricide Kullanılan Nanoakışkanların Isıl ve Hidrolik Performansa Olan Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi. 2024;27(1):313-28.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.