Research Article
BibTex RIS Cite

GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver

Year 2024, , 101 - 108, 29.02.2024
https://doi.org/10.2339/politeknik.1036956

Abstract

The use of space-born GNSS receiver onboard geosyncronous communication satellite is an effective alternative orbit determination technique compared to traditional methods, although the communication satellite operator and manufacturers need some proof. In this study, GPS-based range measurement via space-born receivers’ onboard communication satellite platforms was proposed for precise orbit determination of geostationary satellites. Thus this research investigates how proposed method can be applied to obtain reliable and sustainable results. The analysis was performed to find out the accuracy and validity of the proposed method. Moreover, the results were compared with the simulation of four satellites’ orbital parameters at different orbital slots. The sequential process (SP) Kalman filter method was chosen to process the measured data. The processing method was kept the same for all analyses to investigate the gathered measurement data effects. The results show that the average position differences between the determined and actual orbit are 17.613 m, 13.637 m and 14.998 m, for in-track, cross-track, and radial direction. The average in-track, cross-track, and radial velocity differences are 0.339 cm/s, 0.160 cm/s, and 0.066 cm/s respectively. The results show that the proposed method is approved in communication satellites orbit determination. The utilization of GPS satellites is a promising approach for geostationary satellite orbit determination. The communication satellites operators can utilize the GPS-based orbit determination with its benefits.

References

  • [1] Montenbruck, O., Gill, E., Lutze, F., “Satellite orbits: models, methods and applications.”, Springer Science & Business Media, (2012).
  • [2] Powell, T. D., Martzen, P. D., Sedlacek, S. B., Chao, C. C., Silva, R., Brown, A., Belle, G.. "GPS Signals in a Geosynchronous Transfer Orbit:“Falcon Gold” Data Processing." Proceedings of the 1999 National Technical Meeting of the Institute of Navigation. (1999).
  • [3] Lorga, J. F., Silva, P. F., Dovis, F., Di Cintio, A., Kowaltschek, S., Jimenez, D., Jansson, R., "Autonomous orbit determination for future GEO and HEO missions." 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). IEEE, (2010).
  • [4] Chiaradia, Ana Paula Marins, Hélio Koiti Kuga, and Antonio Fernando Bertachini de Almeida Prado. "Onboard and real-time artificial satellite orbit determination using GPS.", Mathematical Problems in Engineering 2013, (2013).
  • [5] Qiao, L., Lim, S., Rizos, C., Liu, J., "A multiple GNSS-based orbit determination algorithm for geostationary satellites." IGNSS symposium. Vol. 2009. (2009).
  • [6] Bar‐Sever, Yoaz. "Orbit Determination with GNSS." Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications 2: 1893-1919, (2020).
  • [7] Williams, Anthony S. "Expected Position Error for an Onboard Satellite GPS Receiver.", Air Force Institute of Technology Ohio, US, (2015).
  • [8] Kılıç, Ozan. “Kinematic orbit determination of low earth orbitsatellites using GPS and Galileo observations.” MS thesis. Middle East Technical University, (2019).
  • [9] Acharjee, Uzzal K., Anis Ahmed, and Shahida Rafique. "Performance analysis of navigation by the integration of GPS-24 with LEO & GEO." 2007 10th international conference on computer and information technology. IEEE, (2007).
  • [10] Steigenberger, Peter, Steffen Thoelert, and Oliver Montenbruck. "GNSS satellite transmit power and its impact on orbit determination.", Journal of Geodesy, 92.6: 609-624, (2018).
  • [11] Zhou, Peiyuan, et al. "Near real-time BDS GEO satellite orbit determination and maneuver analysis with reversed point positioning." Advances in Space Research 63.5 : 1781-1791., (2019).
  • [12] Choi, E. J., Yoon, J. C., Lee, B. S., Park, S. Y., Choi, K. H., "Onboard orbit determination using GPS observations based on the unscented Kalman filter." Advances in Space Research 46.11: 1440-1450, (2010).
  • [13] Li, M., Li, W., Shi, C., Jiang, K., Guo, X., Dai, X., Liao, M., "Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations." Journal of Geodesy 91.11 (2017): 1313-1327, (2017).
  • [14] Wang, M., Shan, T., Zhang, W., Huan, H., "Analysis of BDS/GPS Signals’ Characteristics and Navigation Accuracy for a Geostationary Satellite." Remote Sensing 13.10: 1967, (2021).
  • [15] Mikhailov, N. V., and Vasil’ev M. V.., "Autonomous satellite orbit determination using paceborne GNSS receivers." Gyroscopy and Navigation 2.1: 1-9, (2011).
  • [16] Wang, M., Shan, T., Li, M., Liu, L., Tao, R., "GNSS-based orbit determination method and flight performance for geostationary satellites." Journal of Geodesy 95.8 (2021): 1-15, (2021).
  • [17] Gerner, J. L., Issler, J. L., Laurichesse, D., Mehlen, C., Wilhelm, N., "TOPSTAR 3000-An Enhanced GPS Receiver for Space Applications." ESA bulletin 104 (2000): 86-91., (2000).
  • [18] https://gdmissionsystems.com/-/media/General-Dynamics/Space-and-Intelligence-Systems/PDF/space-viceroy-gps-receiver-datasheet.ashx?la=en&hash=C3D437F215F1701A0A3C73BBE6A950AB08BF0DD6, "Data Sheet GPS receiver”, (2022).
  • [19] Zhou, P., Du, L., Li, X., Gao, Y., "Near real-time BDS GEO satellite orbit determination and maneuver analysis with reversed point positioning." Advances in Space Research 63.5: 1781-1791, (2021).
  • [20] Pessina, S., De Juana, J. M., Fernandez, J., Lazaro, D., Righetti, P. “Operational Concepts 9 Refinement For The Orbit Determination Of Meteosat Third Generation”, International Symposium on Space Flight Dynamics (ISSFD), (2017).
  • [21] Li, R., Wang, N., Li, Z., Zhang, Y., Wang, Z., Ma, H., "Precise orbit determination of BDS-3 satellites using B1C and B2a dual-frequency measurements.", GPS Solutions 25.3 (2021): 1-14, (2021).

Yere Eşlenik Uydularda Tümleşik Uzay Tabanlı Alıcılar Kullanarak Yörünge Belirleme

Year 2024, , 101 - 108, 29.02.2024
https://doi.org/10.2339/politeknik.1036956

Abstract

Haberleşme uydularına tümleşik konum belirleme uydusu alıcıları ile yörünge belirleme yöntemi, uydu işletmecileri ve üreticileri tarafından tam olarak kabul edilmiş olmasada geleneksel yöntemlere alternatif etkili bir method olarak kullanılabilmektedir. Bu çalışmada haberleşme uydularının hassas yörünge belirleme operasyonu için uyduya tümleşik konum belirleme (GPS) alıcısı ile mesafe ölçümü önerilmiştir. Bu metodun güvenilir ve sürdürülebilir sonuçlar elde etmek için nasıl uygulanabileceği araştırılmıştır. Önerilen yöntemin geçerliliği ve hassasiyeti analiz edilmiştir. İlave olarak elde edilen sonuçlar farklı boylamlarda işletilen dört uydunun yörünge parametreleri ile karşılaştırılmıştır. Ölçüm verilerinin işlenmesi için sıralı işlemsel Kalman filtresi yöntemi seçilmiştir. Bu yöntem toplanan verinin etkisinin incelenmesi için tüm analizler boyunca değiştirilmemiştir. Gerrçek yörünge değerleri ile elde edilen sonuçlar arasındaki ortalama mesafe farkının, radyal, hareket yönünde ve hareket yönüne dik değerleri 14.998 m, 17.613 m, and 13.637 m dir. Ortalama radyal, hareket yönünde ve hareket yönüne dik hız değerleri ise sırasıyla 0.066 cm/s, 0.339 cm/s, 0.160 cm/s dir. Elde edilen sonuçlar önerilen metodun haberleşme uyduları yörünge belirleme operasyonunda kullanılabileceğini göstermektedir. Haberleşme uydusu operatörleri GPS tabanlı yörünge belirleme yöntemini diğer faydaları ile birlikte kullanabilirler.

References

  • [1] Montenbruck, O., Gill, E., Lutze, F., “Satellite orbits: models, methods and applications.”, Springer Science & Business Media, (2012).
  • [2] Powell, T. D., Martzen, P. D., Sedlacek, S. B., Chao, C. C., Silva, R., Brown, A., Belle, G.. "GPS Signals in a Geosynchronous Transfer Orbit:“Falcon Gold” Data Processing." Proceedings of the 1999 National Technical Meeting of the Institute of Navigation. (1999).
  • [3] Lorga, J. F., Silva, P. F., Dovis, F., Di Cintio, A., Kowaltschek, S., Jimenez, D., Jansson, R., "Autonomous orbit determination for future GEO and HEO missions." 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). IEEE, (2010).
  • [4] Chiaradia, Ana Paula Marins, Hélio Koiti Kuga, and Antonio Fernando Bertachini de Almeida Prado. "Onboard and real-time artificial satellite orbit determination using GPS.", Mathematical Problems in Engineering 2013, (2013).
  • [5] Qiao, L., Lim, S., Rizos, C., Liu, J., "A multiple GNSS-based orbit determination algorithm for geostationary satellites." IGNSS symposium. Vol. 2009. (2009).
  • [6] Bar‐Sever, Yoaz. "Orbit Determination with GNSS." Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications 2: 1893-1919, (2020).
  • [7] Williams, Anthony S. "Expected Position Error for an Onboard Satellite GPS Receiver.", Air Force Institute of Technology Ohio, US, (2015).
  • [8] Kılıç, Ozan. “Kinematic orbit determination of low earth orbitsatellites using GPS and Galileo observations.” MS thesis. Middle East Technical University, (2019).
  • [9] Acharjee, Uzzal K., Anis Ahmed, and Shahida Rafique. "Performance analysis of navigation by the integration of GPS-24 with LEO & GEO." 2007 10th international conference on computer and information technology. IEEE, (2007).
  • [10] Steigenberger, Peter, Steffen Thoelert, and Oliver Montenbruck. "GNSS satellite transmit power and its impact on orbit determination.", Journal of Geodesy, 92.6: 609-624, (2018).
  • [11] Zhou, Peiyuan, et al. "Near real-time BDS GEO satellite orbit determination and maneuver analysis with reversed point positioning." Advances in Space Research 63.5 : 1781-1791., (2019).
  • [12] Choi, E. J., Yoon, J. C., Lee, B. S., Park, S. Y., Choi, K. H., "Onboard orbit determination using GPS observations based on the unscented Kalman filter." Advances in Space Research 46.11: 1440-1450, (2010).
  • [13] Li, M., Li, W., Shi, C., Jiang, K., Guo, X., Dai, X., Liao, M., "Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations." Journal of Geodesy 91.11 (2017): 1313-1327, (2017).
  • [14] Wang, M., Shan, T., Zhang, W., Huan, H., "Analysis of BDS/GPS Signals’ Characteristics and Navigation Accuracy for a Geostationary Satellite." Remote Sensing 13.10: 1967, (2021).
  • [15] Mikhailov, N. V., and Vasil’ev M. V.., "Autonomous satellite orbit determination using paceborne GNSS receivers." Gyroscopy and Navigation 2.1: 1-9, (2011).
  • [16] Wang, M., Shan, T., Li, M., Liu, L., Tao, R., "GNSS-based orbit determination method and flight performance for geostationary satellites." Journal of Geodesy 95.8 (2021): 1-15, (2021).
  • [17] Gerner, J. L., Issler, J. L., Laurichesse, D., Mehlen, C., Wilhelm, N., "TOPSTAR 3000-An Enhanced GPS Receiver for Space Applications." ESA bulletin 104 (2000): 86-91., (2000).
  • [18] https://gdmissionsystems.com/-/media/General-Dynamics/Space-and-Intelligence-Systems/PDF/space-viceroy-gps-receiver-datasheet.ashx?la=en&hash=C3D437F215F1701A0A3C73BBE6A950AB08BF0DD6, "Data Sheet GPS receiver”, (2022).
  • [19] Zhou, P., Du, L., Li, X., Gao, Y., "Near real-time BDS GEO satellite orbit determination and maneuver analysis with reversed point positioning." Advances in Space Research 63.5: 1781-1791, (2021).
  • [20] Pessina, S., De Juana, J. M., Fernandez, J., Lazaro, D., Righetti, P. “Operational Concepts 9 Refinement For The Orbit Determination Of Meteosat Third Generation”, International Symposium on Space Flight Dynamics (ISSFD), (2017).
  • [21] Li, R., Wang, N., Li, Z., Zhang, Y., Wang, Z., Ma, H., "Precise orbit determination of BDS-3 satellites using B1C and B2a dual-frequency measurements.", GPS Solutions 25.3 (2021): 1-14, (2021).
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İbrahim Öz 0000-0003-4593-917X

Publication Date February 29, 2024
Submission Date December 15, 2021
Published in Issue Year 2024

Cite

APA Öz, İ. (2024). GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver. Politeknik Dergisi, 27(1), 101-108. https://doi.org/10.2339/politeknik.1036956
AMA Öz İ. GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver. Politeknik Dergisi. February 2024;27(1):101-108. doi:10.2339/politeknik.1036956
Chicago Öz, İbrahim. “GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver”. Politeknik Dergisi 27, no. 1 (February 2024): 101-8. https://doi.org/10.2339/politeknik.1036956.
EndNote Öz İ (February 1, 2024) GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver. Politeknik Dergisi 27 1 101–108.
IEEE İ. Öz, “GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver”, Politeknik Dergisi, vol. 27, no. 1, pp. 101–108, 2024, doi: 10.2339/politeknik.1036956.
ISNAD Öz, İbrahim. “GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver”. Politeknik Dergisi 27/1 (February 2024), 101-108. https://doi.org/10.2339/politeknik.1036956.
JAMA Öz İ. GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver. Politeknik Dergisi. 2024;27:101–108.
MLA Öz, İbrahim. “GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver”. Politeknik Dergisi, vol. 27, no. 1, 2024, pp. 101-8, doi:10.2339/politeknik.1036956.
Vancouver Öz İ. GEO Satellite Orbit Determination Using Spaceborn Onboard Receiver. Politeknik Dergisi. 2024;27(1):101-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.