Research Article
BibTex RIS Cite

Melting Analysis Of Phase Change Material in A Vertical Cylindrical Tube With Fin

Year 2024, , 629 - 638, 27.03.2024
https://doi.org/10.2339/politeknik.1056857

Abstract

In this study, the melting process of the cylindrically encapsulated Phase Change Material (PCM) used in thermal energy storage systems and the effects of fin placement in the cylinder were numerically investigated. For the analysis, a three-dimensional, transient Computational Fluid Dynamics (CFD) model was developed and the model was validated with experimental and numerical data in the literature. In order to examine the effects of the fins on the melting process, three different fin widths, 6, 9, and 12 millimeters, were selected. The effects of the fins were analyzed when the difference between the FDM melting temperature and the outer wall temperature of the cylinder was 10, 20, and 30°C. It has been observed that the fins placed in the PCM have a significant effect on the melting process, and the melting time becomes shorter as the fin width increases. The maximum decrease in melting time due to the fin effect was obtained with a fin width of 12 mm at a temperature difference of 10 °C. In this case, while the melting time is 14.8 minutes, the melting time of FDM without fins is 43.5 minutes.

References

  • [1] Kousksou T., Bruel P., Jamil A., El Rhafiki T., Zeraouli Y., “Energy storage: Applications and challenges,” Sol. Energy Mater. Sol. Cells, 120: 59–80, (2014).
  • [2] Aneke M., Wang M., “Energy storage technologies and real life applications – A state of the art review,” Appl. Energy, 179: 350–377, (2016).
  • [3] Sharif M. K. A., Al-Abidi A. A., Mat S., Sopian K., Ruslan M. H., Sulaiman M. Y., Rosli M. A. M., “Review of the application of phase change material for heating and domestic hot water systems,” Renew. Sustain. Energy Rev., 42: 557–568, (2015).
  • [4] Nazir H., Batool M., Bolivar Osorio F. J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A. M., “Recent developments in phase change materials for energy storage applications: A review,” Int. J. Heat Mass Transf., 129: 491–523, (2019).
  • [5] Abokersh M. H., Osman M., El-Baz O., El-Morsi M., Sharaf O., “Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS),” Int. J. Energy Res., 33: 23–40, (2017).
  • [6] Zhang H., Baeyens J., Cáceres G., Degrève J., Lv Y., “Thermal energy storage: Recent developments and practical aspects,” Prog. Energy Combust. Sci., 53: 1–40, (2016).
  • [7] Sarbu I., “A Comprehensive Review of Thermal Energy Storage,” Sustainability, 10: 191, (2018).
  • [8] Nakhchi M. E., Esfahani J. A., “Improving the melting performance of PCM thermal energy storage with novel stepped fins,” J. Energy Storage, 30: 101424, (2020).
  • [9] Rehman T. ur, Ali H. M., Janjua M. M., Sajjad U., Yan W. M., “A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams,” Int. J. Heat Mass Transf., 135: 649–673, (2019).
  • [10] Rostami S., Afrand M., Shahsavar A., Sheikholeslami M., “A review of melting and freezing processes of PCM / nano-PCM and their application in energy storage,” Energy, 211: 118698, (2020).
  • [11] Yang L., Huang J., Zhou F., “Thermophysical properties and applications of nano-enhanced PCMs : An update review,” Energy Convers. Manag., 214: 112876, (2020).
  • [12] Siva K., Lawrence M. X., Kumaresh G. R., Rajagopalan P., Santhanam H., “Experimental and numerical investigation of phase change materials with finned encapsulation for energy-efficient buildings,” J. Build. Perform. Simul., 3: 245–254, (2010).
  • [13] Shaker M. Y., Sultan A. A., El Negiry E. A., Radwan A., “Melting and solidification characteristics of cylindrical encapsulated phase change materials,” J. Energy Storage, 43: 103104, (2021).
  • [14] Abdi A., Martin V., Chiu J. N. W., “Numerical investigation of melting in a cavity with vertically oriented fins,” Appl. Energy, 235: 1027–1040, (2019).
  • [15] De Césaro Oliveski R., Becker F., Rocha L. A. O., Biserni C., Eberhardt G. E. S., “Design of fin structures for phase change material (PCM) melting process in rectangular cavities,” J. Energy Storage, 35, (2021).
  • [16] Joshi V., Rathod M. K., “Constructal enhancement of thermal transport in latent heat storage systems assisted with fins,” Int. J. Therm. Sci., 145: 105984, (2019).
  • [17] Ji C., Qin Z., Dubey S., Choo F. H., Duan F., “Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection,” Int. J. Heat Mass Transf., 127: 255–265, (2018).
  • [18] Bhagat K., Prabhakar M., Saha S. K., “Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage,” J. Energy Storage, 19: 135–144, (2018).
  • [19] Sheikholeslami M., Haq R. ul, Shafee A., Li Z., Elaraki Y. G., Tlili I., “Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger,” Int. J. Heat Mass Transf., 135: 470–478, (2019).
  • [20] Kazemi M., Hosseini M. J., Ranjbar A. A., Bahrampoury R., “Improvement of longitudinal fins configuration in latent heat storage systems,” Renew. Energy, 116: 447–457, (2018).
  • [21] Pu L., Zhang S., Xu L., Li Y., “Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit,” Appl. Therm. Eng., 166: 114753, (2020).
  • [22] Koşan M., Aktaş M., “Faz Değiştiren Malzemelerle Termal Enerji Depolayan Bir Isı Değiştiricisinin Sayısal Analizi,” J. Polytech., 0900: 403–409, (2018).
  • [23] Shmueli H., Ziskind G., Letan R., “Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments,” Int. J. Heat Mass Transf., 53: 4082–4091, (2010).
  • [24] Katsman L., V. Dubovsky, Ziskind G., Letan R., “Experimental Investigation Of Solid-Liquid Phase Change In Cylindrical Geometry,” in ASME-JSME Thermal Engineering Summer Heat Transfer Conference, 2007, 1–6, 1–6.
  • [25] Cengel Y., Cimbala J., Fluid Mechanics Fundamentals and Applications: Third Edition. McGraw-Hill Higher Education, 2013.
  • [26] Brent A. D., Voller V. R., Reid K. J., “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf., 13: 297–318, (1988).
  • [27] Voller V. R., Prakash C., “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transf., 30: 1709–1719, (1987).
  • [28] Bechiri M., Mansouri K., “Study of heat and fluid flow during melting of PCM inside vertical cylindrical tube,” Int. J. Therm. Sci., 135: 235–246, (2019).

Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi

Year 2024, , 629 - 638, 27.03.2024
https://doi.org/10.2339/politeknik.1056857

Abstract

Bu çalışmada, ısıl enerji depolama sistemlerinde kullanılan silindirik olarak kapsüllenmiş faz değiştiren malzemenin erime süreci ve silindir içerisine kanatçık yerleştirilmesinin etkileri sayısal olarak incelenmiştir. Analizler için üç boyutlu, zamana bağlı Hesaplamalı Akışkanlar Dinamiği modeli oluşturulmuş ve oluşturulan model literatürdeki deneysel ve sayısal veriler ile doğrulanmıştır. Kanatçıkların erime sürecine etkilerini incelemek amacı ile 6, 9 ve 12 mm olmak üzere üç farklı kanatçık genişliği seçilmiştir. Kanatçıkların etkileri, faz değiştiren malzeme erime sıcaklığı ile silindirin dış duvar sıcaklığı arasındaki farkın 10, 20 ve 30 °C olduğu durumlarda analiz edilmiştir. Faz değiştiren malzeme içerisine yerleştirilen kanatçıkların erime sürecine önemli ölçüde etki ettiği, kanatçık genişliği arttıkça erime süresinin kısaldığı görülmüştür. Kanatçık etkisi ile erime süresindeki en büyük düşüş, 10 °C sıcaklık farkında 12 mm kanatçık genişliğinde elde edilmiştir. Bu durumda erime süresi 14.8 dakika iken kanatçıksız faz değiştiren malzemenin erime süresi 43.5 dakikadır.

References

  • [1] Kousksou T., Bruel P., Jamil A., El Rhafiki T., Zeraouli Y., “Energy storage: Applications and challenges,” Sol. Energy Mater. Sol. Cells, 120: 59–80, (2014).
  • [2] Aneke M., Wang M., “Energy storage technologies and real life applications – A state of the art review,” Appl. Energy, 179: 350–377, (2016).
  • [3] Sharif M. K. A., Al-Abidi A. A., Mat S., Sopian K., Ruslan M. H., Sulaiman M. Y., Rosli M. A. M., “Review of the application of phase change material for heating and domestic hot water systems,” Renew. Sustain. Energy Rev., 42: 557–568, (2015).
  • [4] Nazir H., Batool M., Bolivar Osorio F. J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A. M., “Recent developments in phase change materials for energy storage applications: A review,” Int. J. Heat Mass Transf., 129: 491–523, (2019).
  • [5] Abokersh M. H., Osman M., El-Baz O., El-Morsi M., Sharaf O., “Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS),” Int. J. Energy Res., 33: 23–40, (2017).
  • [6] Zhang H., Baeyens J., Cáceres G., Degrève J., Lv Y., “Thermal energy storage: Recent developments and practical aspects,” Prog. Energy Combust. Sci., 53: 1–40, (2016).
  • [7] Sarbu I., “A Comprehensive Review of Thermal Energy Storage,” Sustainability, 10: 191, (2018).
  • [8] Nakhchi M. E., Esfahani J. A., “Improving the melting performance of PCM thermal energy storage with novel stepped fins,” J. Energy Storage, 30: 101424, (2020).
  • [9] Rehman T. ur, Ali H. M., Janjua M. M., Sajjad U., Yan W. M., “A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams,” Int. J. Heat Mass Transf., 135: 649–673, (2019).
  • [10] Rostami S., Afrand M., Shahsavar A., Sheikholeslami M., “A review of melting and freezing processes of PCM / nano-PCM and their application in energy storage,” Energy, 211: 118698, (2020).
  • [11] Yang L., Huang J., Zhou F., “Thermophysical properties and applications of nano-enhanced PCMs : An update review,” Energy Convers. Manag., 214: 112876, (2020).
  • [12] Siva K., Lawrence M. X., Kumaresh G. R., Rajagopalan P., Santhanam H., “Experimental and numerical investigation of phase change materials with finned encapsulation for energy-efficient buildings,” J. Build. Perform. Simul., 3: 245–254, (2010).
  • [13] Shaker M. Y., Sultan A. A., El Negiry E. A., Radwan A., “Melting and solidification characteristics of cylindrical encapsulated phase change materials,” J. Energy Storage, 43: 103104, (2021).
  • [14] Abdi A., Martin V., Chiu J. N. W., “Numerical investigation of melting in a cavity with vertically oriented fins,” Appl. Energy, 235: 1027–1040, (2019).
  • [15] De Césaro Oliveski R., Becker F., Rocha L. A. O., Biserni C., Eberhardt G. E. S., “Design of fin structures for phase change material (PCM) melting process in rectangular cavities,” J. Energy Storage, 35, (2021).
  • [16] Joshi V., Rathod M. K., “Constructal enhancement of thermal transport in latent heat storage systems assisted with fins,” Int. J. Therm. Sci., 145: 105984, (2019).
  • [17] Ji C., Qin Z., Dubey S., Choo F. H., Duan F., “Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection,” Int. J. Heat Mass Transf., 127: 255–265, (2018).
  • [18] Bhagat K., Prabhakar M., Saha S. K., “Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage,” J. Energy Storage, 19: 135–144, (2018).
  • [19] Sheikholeslami M., Haq R. ul, Shafee A., Li Z., Elaraki Y. G., Tlili I., “Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger,” Int. J. Heat Mass Transf., 135: 470–478, (2019).
  • [20] Kazemi M., Hosseini M. J., Ranjbar A. A., Bahrampoury R., “Improvement of longitudinal fins configuration in latent heat storage systems,” Renew. Energy, 116: 447–457, (2018).
  • [21] Pu L., Zhang S., Xu L., Li Y., “Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit,” Appl. Therm. Eng., 166: 114753, (2020).
  • [22] Koşan M., Aktaş M., “Faz Değiştiren Malzemelerle Termal Enerji Depolayan Bir Isı Değiştiricisinin Sayısal Analizi,” J. Polytech., 0900: 403–409, (2018).
  • [23] Shmueli H., Ziskind G., Letan R., “Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments,” Int. J. Heat Mass Transf., 53: 4082–4091, (2010).
  • [24] Katsman L., V. Dubovsky, Ziskind G., Letan R., “Experimental Investigation Of Solid-Liquid Phase Change In Cylindrical Geometry,” in ASME-JSME Thermal Engineering Summer Heat Transfer Conference, 2007, 1–6, 1–6.
  • [25] Cengel Y., Cimbala J., Fluid Mechanics Fundamentals and Applications: Third Edition. McGraw-Hill Higher Education, 2013.
  • [26] Brent A. D., Voller V. R., Reid K. J., “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf., 13: 297–318, (1988).
  • [27] Voller V. R., Prakash C., “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transf., 30: 1709–1719, (1987).
  • [28] Bechiri M., Mansouri K., “Study of heat and fluid flow during melting of PCM inside vertical cylindrical tube,” Int. J. Therm. Sci., 135: 235–246, (2019).
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Burak İzgi 0000-0001-9491-8653

Publication Date March 27, 2024
Submission Date January 12, 2022
Published in Issue Year 2024

Cite

APA İzgi, B. (2024). Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi. Politeknik Dergisi, 27(2), 629-638. https://doi.org/10.2339/politeknik.1056857
AMA İzgi B. Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi. Politeknik Dergisi. March 2024;27(2):629-638. doi:10.2339/politeknik.1056857
Chicago İzgi, Burak. “Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi”. Politeknik Dergisi 27, no. 2 (March 2024): 629-38. https://doi.org/10.2339/politeknik.1056857.
EndNote İzgi B (March 1, 2024) Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi. Politeknik Dergisi 27 2 629–638.
IEEE B. İzgi, “Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi”, Politeknik Dergisi, vol. 27, no. 2, pp. 629–638, 2024, doi: 10.2339/politeknik.1056857.
ISNAD İzgi, Burak. “Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi”. Politeknik Dergisi 27/2 (March 2024), 629-638. https://doi.org/10.2339/politeknik.1056857.
JAMA İzgi B. Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi. Politeknik Dergisi. 2024;27:629–638.
MLA İzgi, Burak. “Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi”. Politeknik Dergisi, vol. 27, no. 2, 2024, pp. 629-38, doi:10.2339/politeknik.1056857.
Vancouver İzgi B. Kanatçıklı Dikey Silindirik Bir Tüp İçerisinde Faz Değiştiren Malzemenin Erime Analizi. Politeknik Dergisi. 2024;27(2):629-38.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.