Research Article
BibTex RIS Cite

The Effects of Environment Temperature on Corrosion Properties of Aluminum Alloy Coated with Graphene Oxide

Year 2023, , 787 - 794, 05.07.2023
https://doi.org/10.2339/politeknik.1062272

Abstract

In this study, the effects of environment temperature on the corrosion behavior of aluminum alloy coated with graphene oxide were investigated. Graphene oxide coating process was applied by electrophoretic coating method. In order to see the effects of temperature on corrosion behavior, electrochemical corrosion tests were carried out on graphene oxide coated samples in 3.5% NaCl environment at 20 °C, 40 °C and 60 °C temperature. In addition, scanning electron microscope (SEM) and X-Ray Diffraction (XRD) studies were also performed. In the scanning electron microscopy studies, the graphene oxide structure, called layer-by-layer, which covers the entire surface, were observed. In EDS analysis, it was determined that the sample surfaces were generally composed of carbon and oxygen, which are graphene oxide components. In XRD analysis of graphene oxide coated surfaces, graphene oxide peaks and aluminum peaks were observed. According to the corrosion test results, it was determined that the corrosion rate increased and the corrosion resistance decreased in graphene oxide coated samples with the increase in environment temperature.

References

  • [1] Mills, R. J., Lattimer, B. Y., Case, S. W., Mouritz, A. P., “The influence of sensitization and corrosion on creep of 5083-H116”, Corrosion Science, 143: 1-9, (2018).
  • [2] Canepa, E., Stifanese, R., Merotto, L., Traverso, P., “Corrosion behaviour of aluminium alloys in deep-sea environment: A review and the KM3NeT test results”, Marine Structures, 59: 271-284, (2018).
  • [3] Karacif, K., Karabulut, H., “Alümina takviyeli alüminyum esaslı kompozit malzemelerin poliprol ile kaplanması ve korozyon davranışının incelenmesi”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20: 118-128, (2020).
  • [4] Durmuş, H., Çömez, N., “Soğuk metal transferi ile birleştirilen AA5754 alaşımı ince sacların korozyon davranışı”, Politeknik Dergisi, 21(4): 907-911, (2018).
  • [5] Li, Z., Yi, D., Tan, C., Wang, B., “Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types”, Journal of Alloys and Compounds, 817: 152690, (2020).
  • [6] Ezuber, H., El-Houd, A., El-Shawesh, F., “A study on the corrosion behavior of aluminum alloys in seawater”, Materials and Design, 29: 801-805, (2008).
  • [7] Kim, S. J., Kim, S. K., Park, J. C., “The corrosion and mechanical properties of Al alloy 5083-H116 in metal inert gas welding based on slow strain rate test”, Surface and Coatings Technology, 205: 573-578, (2010).
  • [8] Lee, S.J., Park, Y.S., Kim, S.J., “Potentiostatic corrosion protection technology under cavitation condition for 5083-H116 Al alloy”, Transactions of Nonferrous Metals Society of China, 23(11): 3206-3214, (2013).
  • [9] Naghdi, S., Jaleh, B., Ehsani, A., “Electrophoretic deposition of graphene oxide on aluminum: Characterization, low thermal annealing, surface and anticorrosive properties”, Bulletin of the Chemical Society of Japan, 88(5): 722-728, (2015).
  • [10] Zhang, X., Zhang, D. C.,Chen, Y., Sun, X. Z., Ma, Y. W., “Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties”, Chinese Science Bulletin, 57(23): 3045-3050, (2012).
  • [11] Chen, L., Tang, Y., Wang, K., Liu, C., Luo, S., “Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application”, Electrochemistry Communications, 13: 133-137, (2011).
  • [12] Mohammed Ali Al-Sammarraie, A., Hasan Raheema, M., “Electrodeposited reduced graphene oxide films on stainless steel, copper, and aluminum for corrosion protection enhancement”, International Journal of Corrosion, 1-9, (2017).
  • [13] Abu Bakar N.H., Ali G.A.M, Ismail J., Algarni H., Chong K.F., “Size-dependent corrosion behavior of graphene oxide coating”, Progress in Organic Coatings, 134: 272-280, (2019).
  • [14] Ma, Y., Han, J., Wang, M., Chen, X., Jia, S., “Electrophoretic deposition of graphene-based materials: A review of materials and their applications”, Journal of Materiomics, 4(2): 108-120, (2018).
  • [15] Chavez-Valdez, A., Shaffer, M. S. P., Boccaccini, A. R., “Applications of graphene electrophoretic deposition. A review”, Journal of Physical Chemistry B, 117 (6): 1502-1515, (2013).
  • [16] Aliyu, A., Srivastava C., “Morphology and corrosion properties of FeMn-Graphene oxide composite coatings”, Journal of Alloys Compound, 821: 153560, (2020).
  • [17] Afseth, A., Nordlien, J.H., Scamans, G.M., Nisancioglu, K., “Influence of heat treatment and surface conditioning on filiform corrosion of aluminum alloys AA3005 and AA5754”, Corrosion Science, 43: 2359-2377, (2001).
  • [18] BinSabt, M.H., Galal, A., Al Kharafi, F.M., Abditon, M., “Improving corrosion protection of Al97Mg3 alloy in neutral sodium chloride solution by 1,2-bis(triethoxysilyl)ethane coating”, Applied Surface Science, 465: 143-153, (2019).
  • [19] Altube, A., Garcia-Lecina, E., Imaz, N., Diez, J.A., Ferron, P., Aizpurua, J.M., “Influence of deposition conditions on the protective behavior of tetraethyl orthosilicate sol-gel films on AA5754 aluminum alloy”, Progress in Organic Coatings, 74: 281-287, (2012).
  • [20] Egorkin, V.S., Gnedenkov, S.V., Sinebryukhov, S.L., Vyaliy, I.E., Gnedenkov, A.S., Chizhikov, R.G., “Increasing thickness and protective properties of PEO-coatings on alüminum alloy”, Surface & Coatings Technology, 334: 29-42, (2018).
  • [21] Melchers, R.E., “Influence of temperature on sea water immersion corrosion of aluminium”, British Corrosion Journal, 36(3): 201-204, (2001).

Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri

Year 2023, , 787 - 794, 05.07.2023
https://doi.org/10.2339/politeknik.1062272

Abstract

Bu çalışmada grafen oksit ile kaplanmış alüminyum alaşımının korozyon davranışına ortam sıcaklığının etkileri araştırılmıştır. Grafen oksit kaplama işlemi elektroforetik kaplama yöntemi ile yapılmıştır. Sıcaklığın korozyon davranışına etkilerini görmek için 20 °C, 40 °C ve 60 °C sıcaklıklardaki %3.5 NaCl ortamında, grafen oksit kaplanmış alüminyum alaşımı numunelere elektrokimyasal korozyon deneyleri yapılmıştır. Ayrıca, taramalı elektron mikroskobu (SEM) ve X-Işınları Kırınımı (XRD) çalışmaları da yapılmıştır. Taramalı elektron mikroskobu çalışmalarında tüm yüzeyi kapatan tabakalı yapı olarak adlandırılan grafen oksit yapısı görülmüştür. EDS analizlerinde numune yüzeylerinin genel olarak grafen oksit bileşenleri olan karbon ve oksijenden oluştuğu belirlenmiştir. XRD analizlerinde grafen oksit kaplanmış yüzeylerde grafen oksit piki ve alüminyum pikleri görülmüştür. Korozyon deneyleri sonuçlarına göre, ortam sıcaklığının artışı ile grafen oksit kaplanmış numunelerde korozyon hızının arttığı, korozyon direncinin azaldığı belirlenmiştir.

References

  • [1] Mills, R. J., Lattimer, B. Y., Case, S. W., Mouritz, A. P., “The influence of sensitization and corrosion on creep of 5083-H116”, Corrosion Science, 143: 1-9, (2018).
  • [2] Canepa, E., Stifanese, R., Merotto, L., Traverso, P., “Corrosion behaviour of aluminium alloys in deep-sea environment: A review and the KM3NeT test results”, Marine Structures, 59: 271-284, (2018).
  • [3] Karacif, K., Karabulut, H., “Alümina takviyeli alüminyum esaslı kompozit malzemelerin poliprol ile kaplanması ve korozyon davranışının incelenmesi”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20: 118-128, (2020).
  • [4] Durmuş, H., Çömez, N., “Soğuk metal transferi ile birleştirilen AA5754 alaşımı ince sacların korozyon davranışı”, Politeknik Dergisi, 21(4): 907-911, (2018).
  • [5] Li, Z., Yi, D., Tan, C., Wang, B., “Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types”, Journal of Alloys and Compounds, 817: 152690, (2020).
  • [6] Ezuber, H., El-Houd, A., El-Shawesh, F., “A study on the corrosion behavior of aluminum alloys in seawater”, Materials and Design, 29: 801-805, (2008).
  • [7] Kim, S. J., Kim, S. K., Park, J. C., “The corrosion and mechanical properties of Al alloy 5083-H116 in metal inert gas welding based on slow strain rate test”, Surface and Coatings Technology, 205: 573-578, (2010).
  • [8] Lee, S.J., Park, Y.S., Kim, S.J., “Potentiostatic corrosion protection technology under cavitation condition for 5083-H116 Al alloy”, Transactions of Nonferrous Metals Society of China, 23(11): 3206-3214, (2013).
  • [9] Naghdi, S., Jaleh, B., Ehsani, A., “Electrophoretic deposition of graphene oxide on aluminum: Characterization, low thermal annealing, surface and anticorrosive properties”, Bulletin of the Chemical Society of Japan, 88(5): 722-728, (2015).
  • [10] Zhang, X., Zhang, D. C.,Chen, Y., Sun, X. Z., Ma, Y. W., “Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties”, Chinese Science Bulletin, 57(23): 3045-3050, (2012).
  • [11] Chen, L., Tang, Y., Wang, K., Liu, C., Luo, S., “Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application”, Electrochemistry Communications, 13: 133-137, (2011).
  • [12] Mohammed Ali Al-Sammarraie, A., Hasan Raheema, M., “Electrodeposited reduced graphene oxide films on stainless steel, copper, and aluminum for corrosion protection enhancement”, International Journal of Corrosion, 1-9, (2017).
  • [13] Abu Bakar N.H., Ali G.A.M, Ismail J., Algarni H., Chong K.F., “Size-dependent corrosion behavior of graphene oxide coating”, Progress in Organic Coatings, 134: 272-280, (2019).
  • [14] Ma, Y., Han, J., Wang, M., Chen, X., Jia, S., “Electrophoretic deposition of graphene-based materials: A review of materials and their applications”, Journal of Materiomics, 4(2): 108-120, (2018).
  • [15] Chavez-Valdez, A., Shaffer, M. S. P., Boccaccini, A. R., “Applications of graphene electrophoretic deposition. A review”, Journal of Physical Chemistry B, 117 (6): 1502-1515, (2013).
  • [16] Aliyu, A., Srivastava C., “Morphology and corrosion properties of FeMn-Graphene oxide composite coatings”, Journal of Alloys Compound, 821: 153560, (2020).
  • [17] Afseth, A., Nordlien, J.H., Scamans, G.M., Nisancioglu, K., “Influence of heat treatment and surface conditioning on filiform corrosion of aluminum alloys AA3005 and AA5754”, Corrosion Science, 43: 2359-2377, (2001).
  • [18] BinSabt, M.H., Galal, A., Al Kharafi, F.M., Abditon, M., “Improving corrosion protection of Al97Mg3 alloy in neutral sodium chloride solution by 1,2-bis(triethoxysilyl)ethane coating”, Applied Surface Science, 465: 143-153, (2019).
  • [19] Altube, A., Garcia-Lecina, E., Imaz, N., Diez, J.A., Ferron, P., Aizpurua, J.M., “Influence of deposition conditions on the protective behavior of tetraethyl orthosilicate sol-gel films on AA5754 aluminum alloy”, Progress in Organic Coatings, 74: 281-287, (2012).
  • [20] Egorkin, V.S., Gnedenkov, S.V., Sinebryukhov, S.L., Vyaliy, I.E., Gnedenkov, A.S., Chizhikov, R.G., “Increasing thickness and protective properties of PEO-coatings on alüminum alloy”, Surface & Coatings Technology, 334: 29-42, (2018).
  • [21] Melchers, R.E., “Influence of temperature on sea water immersion corrosion of aluminium”, British Corrosion Journal, 36(3): 201-204, (2001).
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Kubilay Karacif 0000-0001-7180-7897

Duygu Candemir 0000-0002-6186-0122

Publication Date July 5, 2023
Submission Date January 24, 2022
Published in Issue Year 2023

Cite

APA Karacif, K., & Candemir, D. (2023). Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri. Politeknik Dergisi, 26(2), 787-794. https://doi.org/10.2339/politeknik.1062272
AMA Karacif K, Candemir D. Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri. Politeknik Dergisi. July 2023;26(2):787-794. doi:10.2339/politeknik.1062272
Chicago Karacif, Kubilay, and Duygu Candemir. “Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri”. Politeknik Dergisi 26, no. 2 (July 2023): 787-94. https://doi.org/10.2339/politeknik.1062272.
EndNote Karacif K, Candemir D (July 1, 2023) Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri. Politeknik Dergisi 26 2 787–794.
IEEE K. Karacif and D. Candemir, “Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri”, Politeknik Dergisi, vol. 26, no. 2, pp. 787–794, 2023, doi: 10.2339/politeknik.1062272.
ISNAD Karacif, Kubilay - Candemir, Duygu. “Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri”. Politeknik Dergisi 26/2 (July 2023), 787-794. https://doi.org/10.2339/politeknik.1062272.
JAMA Karacif K, Candemir D. Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri. Politeknik Dergisi. 2023;26:787–794.
MLA Karacif, Kubilay and Duygu Candemir. “Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri”. Politeknik Dergisi, vol. 26, no. 2, 2023, pp. 787-94, doi:10.2339/politeknik.1062272.
Vancouver Karacif K, Candemir D. Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Ortam Sıcaklığının Etkileri. Politeknik Dergisi. 2023;26(2):787-94.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.