Elmas-Su Nanoakışkanı Kullanılan Kanatçıklı ve Farklı Yükseklikli Birleşik Jet Akışlı Kanallarda Yüzeylerin Soğutulması
Year 2024,
, 297 - 311, 29.02.2024
Koray Karabulut
,
Dogan Engin Alnak
Abstract
Çarpan jet-çapraz akıştan oluşan birleşik jet etkisi elektronik elemanların soğutma performansını artırıcı bir etkiye sahiptir. Bu çalışmada, birleşik jet akışıyla kanatçıksız ve 30o açıya sahip kanatçıklı, N=2D kanatçık mesafeli ve H=3D ve 4D yükseklikli kanallarda su ve %2 hacimsel konsantrasyonlu Elmas-Su nanoakışkanı kullanılmasıyla küp ve yamuk modelli yüzeylerden olan ısı transferi ve performans analizi sayısal olarak incelenmiştir. Sayısal araştırma, sürekli ve üç boyutlu, k-ε türbülans modelli Ansys-Fluent programıyla gerçekleştirilmiştir. Literatürdeki çalışmalar gözetilerek kanal boyutlarına uygun olarak kanallara üçer adet model yerleştirilmiştir. Kanaldaki akışkanların Re sayısı aralığı 5000-9000’ dir. Sonuçlar, literatürdeki deneysel çalışmanın Nu sonuçlarıyla kıyaslanmış ve uyumlu oldukları belirlenmiştir. Çalışmanın sonuçları, kanallardaki her bir model için ortalama Nu sayısı ve yüzey sıcaklığının değişimleri olarak su ve nanoakışkan için kanatçıksız ve kanatçıklı durumlarda farklı kanal yüksekliklerinde karşılaştırmalı olarak incelenmiştir. Ayrıca, birleşik jet nanoakışkan akışının hız ve sıcaklık konturu dağılımları sunulmuştur. Bununla birlikte, kanallardaki her üç model yüzeyinin tümü için farklı Reynolds sayılarında performans değerlendirme sayıları (PEC) ve Re=7000 için ortalama Nu sayısı (Num) ve yüzey sıcaklık değerleri (Tm) değerlendirilmiştir. H=3D ve kanatçıklı kanalda Elmas-Su nanoakışkanının kullanılması kanatçıksız ve su akışkanı kullanılan kanala göre küp ve yamuk modelli yüzeylerde Num değerlerinin sırasıyla %24,14 ve %18,91 daha fazla olmasını sağlamıştır.
Supporting Institution
Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) birimi
Project Number
TENO-2021-031
Thanks
Bu çalışma, Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) birimi tarafından TEKNO-2021-031 proje numarası ile desteklenmiştir.
References
- [1] Naga Ramesh K., Karthikeya Sharma T., Amba Prasad Rao G., “Latest advancements in heat transfer enhancement in the micro channel heat sinks: a review”, Archives of Computational Methods in Engineering, 28:3135-3165, (2021).
- [2] Alnak D.E., Karabulut K., “Computational analysis of heat and mass transfer of impinging jet onto different foods during the drying process at low Reynolds numbers”, Journal of
Engineering Thermophysics, 28:255-268, (2019).
- [3] Karabulut K., Alnak D.E., “Investigation of air jet impingement drying with forced convection of moist things” Pamukkale University Journal of Engineering Sciences, 25:387-395, (2019).
- [4] Alnak D.E., Karabulut K., “Analysis of heat and mass transfer of the different moist object geometries with air slot jet impinging for forced convection drying”, Thermal Science,
22:2943-2953, (2018).
- [5] Kılıç M., “Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18:121-132,
(2018).
- [6] Teamah M.A., Dawood M.M., Shehata A., “Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate”, Experimental
Thermal and Fluid Science, 74:235-246, (2015).
- [7] Hadipour A., Zargarabadi M.R., “Heat transfer and flow characteristics of impinging jet on a concave surface at small nozzle to surface distances”, Applied Thermal Engineering, 138:534-
541, (2018).
- [8] Karabulut K., Alnak D.E., “Dikdörtgen bir kanaldaki farklı desenli yüzey geometrilerinin ısı transferine olan etkilerinin incelenmesi”, Tesisat Mühendisliği Dergisi, 183:37-49, (2021).
- [9] Demircan T., “Numerical analysis of cooling an electronic circuit component with cross flow and jet combination”, Journal of Mechanics, 35:395-404, (2019).
- [10] Öztürk S.M., Demircan T., “Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-
flow combination”, Journal of the Faculty of Engineering and Architecture of Gazi University, 37:57-74, (2022).
- [11] Maghrabie H.M., Attalla M., Fawaz H.E., Khalil M., “Numerical investigation of heat transfer and pressure drop of in-line array of heated obstacles cooled by jet impingement in cross-flow”,
Alexandria Engineering Journal, 56:285-296, (2017).
- [12] Chang T.B., Yang Y.K., “Heat transfer performance of jet impingement flow boiling using Al2O3-water nanofluid”, Journal of Mechanical Science and Technology, 28:1559 1566, (2014).
- [13] Datta A., Jaiswal A., Halder P., “Heat transfer analysis of slot jet impingement using nano fluid on convex surface”, IOP Conference Series-Materials Science and Engineering, 402:012098, (2018).
- [14] Kumar D., Zunaid M., Gautam S., “Heat sink analysis in jet impingement with air foil pillars and nanoparticles”, Materials Today: Proceedings, 46:10752-10756, (2021).
- [15] Selimefendigil F., Chamkha A.J., “Cooling of an isothermal surface having a cavity component by using CuO-water nano-jet”, International Journal of Numerical Methods for Heat & Fluid
Flow, 30:2169-2191, (2020).
- [16] Abdullah M.F., Zulkifli R., Harun Z., Abdullah S., Wan Ghopa W.A., Najm A.S., Sulaiman N.H., “Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin
impingement jet of a heated aluminum plate”, Micromachines, 10:176, (2019).
- [17] Maxwell J.C., “A treatise on electricity and magnetism”, Clarendon Press, Oxford, UK, 1873.
- [18] Mohammed H.A., Gunnasegaran P., Shuaib N.H., “The impact of various nanofluid types on triangular microchannels heat sink cooling performance”, International Communications
in Heat and Mass Transfer, 3: 767-773, (2011).
- [19] Karabulut K., Buyruk E., Kilinc F., “Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid”, Journal of the Brazilian
Society of Mechanical Sciences and Engineering, 42:5, (2020).
- [20] Wang S.J., Mujumdar A.S., “A comparative study of five low Reynolds number k-ε models for impingement heat transfer”, Applied Thermal Engineering, 25:31-44, (2005).
- [21] Karabulut K., Alnak D.E., “Investigation of the variation of cooling performance with the channel height in a channel having impinging jet-cross flow”, ISPEC 12th International Conference on
Engineering & Natural Sciences, Bingöl, 273-290, (2021).
- [22] Genç M.S., “Numerical simulation of flow over a thin aerofoil at a high Reynolds number using a transition model”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 24:2155-2164, (2010).
- [23] Genc M.S., Kaynak U., Lock G.D., “Flow over an aerofoil without and with a leading- edge slat at a transitional Reynolds number”, Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, 223: 217-231, (2009).
- [24] Karasu İ., Özden M., Genç M.S., “Performance assesment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers, Journal of Fluids Engineering, 140:
121102, (2018).
- [25] Karasu İ., Genç M.S., Açıkel H.H., “Numerical study on low Reynolds number flow over an aerofoil, Journal of Applied Mechanical Engineering, 2:131, (2013).
- [26] Genç M.S., Kaynak Ü., Yapıcı H., “Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction”, European Journal of
Mechanics B/Fluids, 30:218-235, (2011).
- [27] Genç M.S., Lock G., Kaynak U., “An experimental and computational study of low Re number transitional flows over an aerofoil with leading edge slat”, The 26th Congress of ICAS, Alaska, 77-88,
(2008).
- [28] Genç M.S., Koca K., Açıkel H.H., Özkan G., Kırış M.S., Yıldız R., “Flow characteristics over NACA4412 airfoil at low Reynolds number”, EPJ Web of Conferences, 114:02029, (2016).
- [29] Demir H., Özden M., Genç S.M., Çağdaş M., “Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios, EPJ Web of Conferences, 114:02016, (2016).
- [30] Wang S.J., Mujumdar A.S., “A comparative study of five low Reynolds number k–ε models for impingement heat transfer”, Applied Thermal Engineering, 25:31-44, (2005).
- [31] Karabulut K., “Heat transfer improvement study of electronic component surfaces using air jet impingement”, Journal of Computational Electronics, 18:1259-1271, (2019).
- [32] Karabulut K., Alnak D.E., “Study of cooling of the varied designed warmed surfaces with an air jet impingement”, Pamukkale University Journal of Engineering Sciences, 26:88-98,
(2020).
- [33] Alnak D.E., “Thermohydraulic performance study of different square baffle angles in cross-corrugated channel”, Journal of Energy Storage, 28:101295, (2020).
- [34] Ma C.F., Bergles A.E., “Boiling jet impingement cooling of simulated microelectronic chips”, Heat Transfer In Electronic Equipment HTD, 28:5-12, (1983).
Cooling of Surfaces In Combined Jet Flow Channels with Fin and Different Height Using Diamond-Water Nanofluid
Year 2024,
, 297 - 311, 29.02.2024
Koray Karabulut
,
Dogan Engin Alnak
Abstract
The combined jet effect, which consists of a impinging jet and cross flow, has an effect that increases the cooling performance of electronic elements. In this study, heat transfer and performance analysis from cube and trapezoidal surfaces by using water and 2% volumetric concentration Diamond-Water nanofluid in channels without fin and 30o fin angled, N=2D fin distance and H=3D and 4D channel heights with combined jet flow were numerically researched. Numerical analysis was carried out steady and in three dimensions with the k-ε turbulence model Ansys-Fluent program. Considering the studies in the literature, three models were placed in the channels in accordance with the channel dimensions. The Re number range of the fluids in the channel is 5000-9000. The results were matched with the Nu results of the experimental study in the literature and they were determined to be compatible. The results of the study were examined comparatively for water and nanofluid as mean Nu number and surface temperature changes for each model in channels at different channel heights in finless and finned cases. In addition, velocity and temperature contour distributions of the combined jet nanofluid flow were presented. However, performance evaluation numbers (PEC) at different Reynolds numbers and average Nu number (Num) and surface temperature values (Tm) were evaluated for Re=7000 for all three model surfaces in the channels. The use of Diamond-Water nanofluid in the H=3D and finned channel resulted in 24.14% and 18.91% higher Num values on cube and trapezoidal surfaces compared to the finless and water-fluid channel, respectively.
Project Number
TENO-2021-031
References
- [1] Naga Ramesh K., Karthikeya Sharma T., Amba Prasad Rao G., “Latest advancements in heat transfer enhancement in the micro channel heat sinks: a review”, Archives of Computational Methods in Engineering, 28:3135-3165, (2021).
- [2] Alnak D.E., Karabulut K., “Computational analysis of heat and mass transfer of impinging jet onto different foods during the drying process at low Reynolds numbers”, Journal of
Engineering Thermophysics, 28:255-268, (2019).
- [3] Karabulut K., Alnak D.E., “Investigation of air jet impingement drying with forced convection of moist things” Pamukkale University Journal of Engineering Sciences, 25:387-395, (2019).
- [4] Alnak D.E., Karabulut K., “Analysis of heat and mass transfer of the different moist object geometries with air slot jet impinging for forced convection drying”, Thermal Science,
22:2943-2953, (2018).
- [5] Kılıç M., “Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18:121-132,
(2018).
- [6] Teamah M.A., Dawood M.M., Shehata A., “Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate”, Experimental
Thermal and Fluid Science, 74:235-246, (2015).
- [7] Hadipour A., Zargarabadi M.R., “Heat transfer and flow characteristics of impinging jet on a concave surface at small nozzle to surface distances”, Applied Thermal Engineering, 138:534-
541, (2018).
- [8] Karabulut K., Alnak D.E., “Dikdörtgen bir kanaldaki farklı desenli yüzey geometrilerinin ısı transferine olan etkilerinin incelenmesi”, Tesisat Mühendisliği Dergisi, 183:37-49, (2021).
- [9] Demircan T., “Numerical analysis of cooling an electronic circuit component with cross flow and jet combination”, Journal of Mechanics, 35:395-404, (2019).
- [10] Öztürk S.M., Demircan T., “Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-
flow combination”, Journal of the Faculty of Engineering and Architecture of Gazi University, 37:57-74, (2022).
- [11] Maghrabie H.M., Attalla M., Fawaz H.E., Khalil M., “Numerical investigation of heat transfer and pressure drop of in-line array of heated obstacles cooled by jet impingement in cross-flow”,
Alexandria Engineering Journal, 56:285-296, (2017).
- [12] Chang T.B., Yang Y.K., “Heat transfer performance of jet impingement flow boiling using Al2O3-water nanofluid”, Journal of Mechanical Science and Technology, 28:1559 1566, (2014).
- [13] Datta A., Jaiswal A., Halder P., “Heat transfer analysis of slot jet impingement using nano fluid on convex surface”, IOP Conference Series-Materials Science and Engineering, 402:012098, (2018).
- [14] Kumar D., Zunaid M., Gautam S., “Heat sink analysis in jet impingement with air foil pillars and nanoparticles”, Materials Today: Proceedings, 46:10752-10756, (2021).
- [15] Selimefendigil F., Chamkha A.J., “Cooling of an isothermal surface having a cavity component by using CuO-water nano-jet”, International Journal of Numerical Methods for Heat & Fluid
Flow, 30:2169-2191, (2020).
- [16] Abdullah M.F., Zulkifli R., Harun Z., Abdullah S., Wan Ghopa W.A., Najm A.S., Sulaiman N.H., “Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin
impingement jet of a heated aluminum plate”, Micromachines, 10:176, (2019).
- [17] Maxwell J.C., “A treatise on electricity and magnetism”, Clarendon Press, Oxford, UK, 1873.
- [18] Mohammed H.A., Gunnasegaran P., Shuaib N.H., “The impact of various nanofluid types on triangular microchannels heat sink cooling performance”, International Communications
in Heat and Mass Transfer, 3: 767-773, (2011).
- [19] Karabulut K., Buyruk E., Kilinc F., “Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid”, Journal of the Brazilian
Society of Mechanical Sciences and Engineering, 42:5, (2020).
- [20] Wang S.J., Mujumdar A.S., “A comparative study of five low Reynolds number k-ε models for impingement heat transfer”, Applied Thermal Engineering, 25:31-44, (2005).
- [21] Karabulut K., Alnak D.E., “Investigation of the variation of cooling performance with the channel height in a channel having impinging jet-cross flow”, ISPEC 12th International Conference on
Engineering & Natural Sciences, Bingöl, 273-290, (2021).
- [22] Genç M.S., “Numerical simulation of flow over a thin aerofoil at a high Reynolds number using a transition model”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 24:2155-2164, (2010).
- [23] Genc M.S., Kaynak U., Lock G.D., “Flow over an aerofoil without and with a leading- edge slat at a transitional Reynolds number”, Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, 223: 217-231, (2009).
- [24] Karasu İ., Özden M., Genç M.S., “Performance assesment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers, Journal of Fluids Engineering, 140:
121102, (2018).
- [25] Karasu İ., Genç M.S., Açıkel H.H., “Numerical study on low Reynolds number flow over an aerofoil, Journal of Applied Mechanical Engineering, 2:131, (2013).
- [26] Genç M.S., Kaynak Ü., Yapıcı H., “Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction”, European Journal of
Mechanics B/Fluids, 30:218-235, (2011).
- [27] Genç M.S., Lock G., Kaynak U., “An experimental and computational study of low Re number transitional flows over an aerofoil with leading edge slat”, The 26th Congress of ICAS, Alaska, 77-88,
(2008).
- [28] Genç M.S., Koca K., Açıkel H.H., Özkan G., Kırış M.S., Yıldız R., “Flow characteristics over NACA4412 airfoil at low Reynolds number”, EPJ Web of Conferences, 114:02029, (2016).
- [29] Demir H., Özden M., Genç S.M., Çağdaş M., “Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios, EPJ Web of Conferences, 114:02016, (2016).
- [30] Wang S.J., Mujumdar A.S., “A comparative study of five low Reynolds number k–ε models for impingement heat transfer”, Applied Thermal Engineering, 25:31-44, (2005).
- [31] Karabulut K., “Heat transfer improvement study of electronic component surfaces using air jet impingement”, Journal of Computational Electronics, 18:1259-1271, (2019).
- [32] Karabulut K., Alnak D.E., “Study of cooling of the varied designed warmed surfaces with an air jet impingement”, Pamukkale University Journal of Engineering Sciences, 26:88-98,
(2020).
- [33] Alnak D.E., “Thermohydraulic performance study of different square baffle angles in cross-corrugated channel”, Journal of Energy Storage, 28:101295, (2020).
- [34] Ma C.F., Bergles A.E., “Boiling jet impingement cooling of simulated microelectronic chips”, Heat Transfer In Electronic Equipment HTD, 28:5-12, (1983).