Research Article
BibTex RIS Cite

Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz ile Belirlenmesi ve Zemin İyileştirmesinin Analize Etkileri

Year 2024, , 1029 - 1041, 25.07.2024
https://doi.org/10.2339/politeknik.1105277

Abstract

Depremler sırasında yumuşak alüvyon zeminlerin bulunduğu bölgelerde sıvılaşma kaynaklı hasarlar meydana gelebilmektedir. Bu nedenle bu çalışma, alüvyon kökenli Adapazarı zeminlerini temsil eden tipik bir kesitin sıvılaşma potansiyelinin sayısal analiz yardımıyla değerlendirilmesini konu almaktadır. Analizler, Plaxis 2D yazılımı ile yürütülmüş, zemin kesiti ise UBCSAND malzeme modeli ile modellenmiştir. Ek olarak, sıvılaşma potansiyeli yüksek olan Adapazarı zemin kesitinde, zemin iyileştirmesinin sıvılaşmaya karşı etkisinin belirlenebilmesi adına, yapı yükü uygulanması halinde ve yapı altında jet-grout kolonlarının modellenmesi durumlarında analizler tekrar edilmiştir. Deprem verisi olarak 1999 Marmara Depremi kullanılmıştır. Yapılan analizler sonucunda belirli analiz noktaları seçilerek, bu noktalardaki ivme-zaman, deplasman-zaman ve boşluk suyu basıncı değişimleri incelenmiştir. Söz konusu analiz noktalarında maksimum ivme değerleri incelendiğinde, bazı noktalarda sıvılaşmanın sönümlenememesi ile zemin büyütmelerinin yaşandığı gözlemlenmiştir. Deplasman-zaman değişimlerinde ise iyileştirmenin yatay deplasmanları %59 değerine kadar azalttığı belirlenmiştir. Ek olarak, iyileştirmenin olmadığı durumda boşluk suyu basınçlarının toplam gerilmeye ulaştığı ve sıvılaşmanın gerçekleştiği; iyileştirme durumunda ise boşluk suyu basınçları toplam gerilmeye ulaşmadığından sıvılaşmanın önüne geçildiği gözlemlenmiştir. Sonuçlara dayanarak, modelin sıvılaşma davranışını temsil edip etmediğinin daha detaylı tartışılması gerektiği belirlenmiştir.

References

  • [1] Kara D., Bozdoğan K. B. ve Keskin E., “Çerçeve sistemlerin yapı zemin etkileşimli serbest titreşim analizi”, Politeknik Dergisi, 23(4): 1347-1355, (2020).
  • [2] Yiğit, A., “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”, Politeknik Dergisi, 24(3): 943-952, (2021).
  • [3] Sarımurat S., Taşan H. E., Işık N.S. ve Fırat S., “Taş kolon performanslarının hipoplastik model ile analizi”, Politeknik Dergisi, 24(3): 997-1007, (2021).
  • [4] Huang Y. and Wen Z., “Recent Developments of Soil Improvement Methods for Seismic Liquefaction Mitigation”, Natural Hazards, 76(3): 1927-1938, (2015).
  • [5] Youd T.L., “Liquefaction, Flow, and Associated Ground Failure”, US Geological Survey Circular, 688: 1 - 12, (1973).
  • [6] Ishihara K., “Liquefaction and Flow Failure During Earthquakes”, Geotechnique, 43(3): 351 - 451, (1993).
  • [7] Kramer S.L., “Geotechnical Earthquake Engineering”, Prentice-Hall international series in civil engineering and engineering mechanics, Upper Saddle River, (1996).
  • [8] Popescu R. and Prevost J.H., “Centrifuge Validation of a Numerical Model for Dynamic Soil Liquefaction”, Soil Dynamics and Earthquake Engineering, 12(2): 73 - 90, (1993).
  • [9] Cetin K.O., Seed R.B., Moss R.E.S. et al., “Field Case Histories for SPT-Based In Situ Liquefaction Potential Evaluation, Geotechnical Engineering Research”, Re-port No. UCB/GT-2000/09, Geotechnical Engineering, Department of Civil Engineering, University of California, Berkeley, (2000).
  • [10] Kramer S.L. and Elgamal A.W., “Modeling Soil Liquefaction Hazards for Performance Based Earthquake Engineering”, Pacific Earthquake Engineering Research Center, Berkeley, California, (2001).
  • [11] Byrne P.M., Park S.S., Beaty M., Sharp M., Gonzalez L. and Abdoun T. “Numerical Modeling of Liquefaction and Comparison with Centrifuge Tests”, Canadian Geotechnical Journal, 41(2): 193 - 211, (2004).
  • [12] Andrianopoulos K.I., Papadimitriou A.G., and Bouckovalas G.D., “Bounding Surface Plasticity Model for the Seismic Liquefaction Analysis of Geostructures”, Soil Dynamics and Earthquake Engineering, 30(10): 895 – 911, (2010).
  • [13] Beaty M.H. and Perlea V.G., “Effect of Ground Motion Characteristics on Liquefaction Modeling of Dams”, Geo congress, State of the Art and Practice in Geotechnical Engineering, USA, 2108 - 2117, (2012).
  • [14] Ramirez J., Barrero A.R., Chen L., Dashti S., Ghofrani A., Taiebat M. and Arduino P., “Site Response in a Layered Liquefiable Deposit: Evaluation of Different Numerical Tools and Methodologies with Centrifuge Experimental Results”, Journal of Geotechnical and Geoenvironmental Engineering, 144(10): 1943 - 1947, (2018).
  • [15] Puebla H., Byrne P.M. and Phillips R., “Analysis of CANLEX Liquefaction Embankments: Prototype and Centrifuge Models”, Canadian Geotechnical Journal, 34(5): 641 - 657, (1997).
  • [16] Beaty M. and Byrne P.M., “An effective stress model for predicting liquefaction behaviour of sand”, Geotechnical earthquake engineering and soil dynamics III, Edited by P. Dakoulas, M. Yegian, and R. Holtz. American Society of Civil Engineers, Geotechnical Special Publication, 75(1): 766–777, (1998).
  • [17] Ziotopoulou K., Boulanger R.W. and Kramer S.L., “Site response analysis of liquefying sites”, GeoCongress, ASCE, 1799 - 1808, (2012).
  • [18] Ecemis N., “Simulation of seismic liquefaction: 1-g model testing system and shaking table tests”, European Journal of Environmental and Civil Engineering, 17(10): 899 - 919, (2013).
  • [19] Petalas A. and Galavi V., “Plaxis Liquefaction Model UBC3D-PLM”, Online, (2013). Available in: http://kb.plaxis.nl/search/site/UBC3D-PLM.
  • [20] Sriskandakumar S., “Cyclic Loading Response of Fraser Sand for Validation of Numerical Models Simulating Centrifuge Tests”, Master thesis, The University of British Columbia, Department of Civil Engineering, (2004).
  • [21] Ozenc S., “PM4SAND Zemin Bünye Modeline ait Parametrelerin Yüzeysel Temellerde Sıvılaşma Kaynaklı Deformasyonlara Etkisi”, Master Tezi, İstanbul Üniversitesi, Cerrahpaşa Lisansüstü Eğitim Enstitüsü, (2019).
  • [22] Önalp A., Sert S. ve Bol E., “Adapazarı Zeminlerinin Deprem Performansı”, Zemin Mekaniği ve Temel Mühendisliği 8. Ulusal Kongresi, İstanbul, 373 - 382, (2000).
  • [23] Erken A., “The Role of Geotechnical Factors on Observed Damage in Adapazarı”, XVth International Conference on Soil Mechanics & Geotechnical Engineering, İstanbul, 15 - 22, (2001).
  • [24] TS1900/1987, “İnşaat mühendisliğinde zemin lâboratuvar deneyleri - Bölüm 1: Fiziksel özelliklerin tayini”, (2006).
  • [25] TS1500/2000, “İnşaat mühendisliğinde zeminlerin sınıflandırılması”, (2000).
  • [26] Sert S., “Aluviyal Ortamda Kazıklı Yayılı Temellerin Üç Boyutlu Analizi”, Doktora tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, (2003).
  • [27] Bol E. ve Önalp A., “Adapazarı Zeminlerinin Jeomorfolojik ve Geoteknik Özellikleri”, ZMTM 9. Ulusal Kongresi, Eskişehir, 1 - 8, (2002).
  • [28] Sancio R.B., Bray J.D., Stewart J.P., Youd T.L., Durgunoğlu H.T., Önalp A., Seed R.B., Chrıstensen C., Baturay M.B. and Karadayılar T., “Correlation between ground failure and soil conditions in Adapazari, Turkey”, Soil Dynamics and Earthquake Engineering, 22(9-12): 1093 - 1102, (2002).
  • [29] Seed R.B., Cetin K.O., Moss R.E., Kammerer A.M., Wu J., Pestana J.M., Riemer M., Sancio R., J. Bray, R. Kayen and A. Faris, “Recent advances in soil liquefaction engineering: a unified and consistent framework”, 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, California, (2003).
  • [30] Bol E., Önalp A., Arel E., Sert S. and Özocak A., “Liquefaction of silts: the Adapazari criteria”, Bulletin of Earthquake Engineering, 8(4): 859 - 873 (2010).
  • [31] Seed H.B. and Idriss I.M., “Simplified procedure for evaluating soil liquefaction potential”, Journal of Soil Mechanics, 97(9): 1249 - 1273, (1971).
  • [32] Iwasaki T., Arawaka T. and Tokida K.I., “Simplified procedures for assessing soil liquefaction during earthquakes”, Dynamics and Earthquake Engineering, 3(1): 49 - 58, (1984).
  • [33] Liao S.S and Whitman R.V., “Overburden correction factors for SPT in sand”, Journal of Geotechnical Engineering, 112(3): 373 - 377, (1986).
  • [34] Robertson P. and Wride C.E., “Cyclic liquefaction and its evaluation based on SPT and CPT”, NCEER Work-shop on Evaluation of Liquefaction Resistance of Soils, Report NCEER-97-0022, National Center for Earthquake Engineering Research, SUNY Buffalo, NY, (1997).
  • [35] TBDY 2018, “Türkiye Bina Deprem Yönetmeliği: Deprem Etkisi Altında Binaların Tasarımı için Esaslar”, (2018).
  • [36] Juang C.H., Yuan H., Lee D.H. and Lin P.S., “A simplified CPT-based method for evaluating liquefaction potential of soils”, Journal of geotechnical and geoenvironmental engineering, 129(1), 66 - 80, (2003).
  • [37] Galavi V., Petalas A. and Brinkgreve R.B.J., “Finite Element Modelling of Seismic Liqufaction in Soils”, Geotechnical Engineering Journal of the SEAGS & AGSSEA, 44(3): 55 - 64, (2013).
  • [38] Tsegaye A.B., “Plaxis Liquefaction Model”, Delft, The Netherlands, (2010).
  • [39] Schweiger H.F., “The Role of Advanced Constitutive Models in Geotechnical Engineering”, Journal of Geomechanics and Tunneling, 1(5): 336 - 344, (2008).
  • [40] Beaty M.H. and Byrne P.M., “UBCSAND Constitutive Model Version 904aR”, Documentation Report: UBCSAND Constitutive Model on Itasca UDM Web Site, (2011).
  • [41] E. Naesgaard, “A hybrid effective stress-total stress procedure for analysing soil embankments subjected to potential liquefaction and flow”, Doctorate thesis, University of British Columbia, (2011).
  • [42] Marka A., “Evaluation of the UBC3D-PLM Constitutive Model For Prediction of Earthquake Induced Liquefaction On Embankment Dams”, Master Thesis, TU Delft CITG, (2013).
  • [43] Meyerhof G., “Discussion on research on determining the density of sands by spoon penetration testing”, 4th International Conference on Soil Mechanics and Foundation Engineering, London, (1957).
  • [44] Cubrinovski M. and Ishihara K., “Correlation between penetration resistance and relative density of sandy soils”, 15. ICSMGE, İstanbul, Türkiye (2001).
  • [45] PLAXIS 2D CONNECT Edition V21, “PLAXIS 2D CONNECT Edition V21 Tutorial 16 Free Vibration and Earthquake Analysis of a Building”, (2021).
  • [46] Kuhlemeyer R.L., and Lysmer J., “Finite Element Method Accuracy for Wave Propagation Problems”, Journal of Soil Mechanics and Foundation Devision, 99(5): 421 - 427, (1973).
  • [47] Demir S. ve Özener, P., “Sıvılaşmanın UBC3D-PLM Model ile Tahmin Edilmesi: Santrifüj Deneyi Örneği”, Teknik Dergi, 30: 9421-9442, (2019).
  • [48] Sünbül A.B. ve Parlak S., “Sonlu elemanlara dayalı sayısal analiz; temel altı zemin iyileştirme örneği”, 2nd International Sustainable Buildings Symposium, ISBS, Ankara, Turkey, 253 - 257, (2015).
  • [49] Dülger M., “UBCSAND model ile sıvılaşma davranışının incelenmesi”, Master tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2015).

Evaluation of Liquefaction Potential on Alluvial Soils by Numerical Analysis and Effect of Soil Improvement on the Analysis

Year 2024, , 1029 - 1041, 25.07.2024
https://doi.org/10.2339/politeknik.1105277

Abstract

During earthquakes, liquefaction-induced damages may occur in areas with soft alluvial soils. Therefore, this study deals with the evaluation of the liquefaction potential of a typical section representing the alluvial origin Adapazarı soils with the help of numerical analysis. The analyzes were carried out with Plaxis 2D software, and the soil section was modeled with the UBCSAND material model. In addition, in Adapazarı soil section with high liquefaction potential, the analyzes were repeated in order to determine the effect of soil improvement against liquefaction, in case of application of structural load and modeling of jet-grout columns under the structure. 1999 Marmara Earthquake was used as earthquake data. As a result of the analysis, certain analysis points were selected and the acceleration-time, displacement-time and pore water pressure changes at these points were examined. When the maximum acceleration values were examined at the mentioned analysis points, it was observed that there are soil amplifications due to the undamped liquefaction. In case of the displacement-time changes were examined, it was determined that the improvement reduced the horizontal displacements up to 59%. In addition, in the absence of improvement, pore water pressures reach total stress and liquefaction occurs; in the case of improvement, it was observed that liquefaction was prevented since the pore water pressures did not reach the total stress. Based on the results, it was determined that whether the model represents liquefaction behavior should be discussed in more detail.

References

  • [1] Kara D., Bozdoğan K. B. ve Keskin E., “Çerçeve sistemlerin yapı zemin etkileşimli serbest titreşim analizi”, Politeknik Dergisi, 23(4): 1347-1355, (2020).
  • [2] Yiğit, A., “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”, Politeknik Dergisi, 24(3): 943-952, (2021).
  • [3] Sarımurat S., Taşan H. E., Işık N.S. ve Fırat S., “Taş kolon performanslarının hipoplastik model ile analizi”, Politeknik Dergisi, 24(3): 997-1007, (2021).
  • [4] Huang Y. and Wen Z., “Recent Developments of Soil Improvement Methods for Seismic Liquefaction Mitigation”, Natural Hazards, 76(3): 1927-1938, (2015).
  • [5] Youd T.L., “Liquefaction, Flow, and Associated Ground Failure”, US Geological Survey Circular, 688: 1 - 12, (1973).
  • [6] Ishihara K., “Liquefaction and Flow Failure During Earthquakes”, Geotechnique, 43(3): 351 - 451, (1993).
  • [7] Kramer S.L., “Geotechnical Earthquake Engineering”, Prentice-Hall international series in civil engineering and engineering mechanics, Upper Saddle River, (1996).
  • [8] Popescu R. and Prevost J.H., “Centrifuge Validation of a Numerical Model for Dynamic Soil Liquefaction”, Soil Dynamics and Earthquake Engineering, 12(2): 73 - 90, (1993).
  • [9] Cetin K.O., Seed R.B., Moss R.E.S. et al., “Field Case Histories for SPT-Based In Situ Liquefaction Potential Evaluation, Geotechnical Engineering Research”, Re-port No. UCB/GT-2000/09, Geotechnical Engineering, Department of Civil Engineering, University of California, Berkeley, (2000).
  • [10] Kramer S.L. and Elgamal A.W., “Modeling Soil Liquefaction Hazards for Performance Based Earthquake Engineering”, Pacific Earthquake Engineering Research Center, Berkeley, California, (2001).
  • [11] Byrne P.M., Park S.S., Beaty M., Sharp M., Gonzalez L. and Abdoun T. “Numerical Modeling of Liquefaction and Comparison with Centrifuge Tests”, Canadian Geotechnical Journal, 41(2): 193 - 211, (2004).
  • [12] Andrianopoulos K.I., Papadimitriou A.G., and Bouckovalas G.D., “Bounding Surface Plasticity Model for the Seismic Liquefaction Analysis of Geostructures”, Soil Dynamics and Earthquake Engineering, 30(10): 895 – 911, (2010).
  • [13] Beaty M.H. and Perlea V.G., “Effect of Ground Motion Characteristics on Liquefaction Modeling of Dams”, Geo congress, State of the Art and Practice in Geotechnical Engineering, USA, 2108 - 2117, (2012).
  • [14] Ramirez J., Barrero A.R., Chen L., Dashti S., Ghofrani A., Taiebat M. and Arduino P., “Site Response in a Layered Liquefiable Deposit: Evaluation of Different Numerical Tools and Methodologies with Centrifuge Experimental Results”, Journal of Geotechnical and Geoenvironmental Engineering, 144(10): 1943 - 1947, (2018).
  • [15] Puebla H., Byrne P.M. and Phillips R., “Analysis of CANLEX Liquefaction Embankments: Prototype and Centrifuge Models”, Canadian Geotechnical Journal, 34(5): 641 - 657, (1997).
  • [16] Beaty M. and Byrne P.M., “An effective stress model for predicting liquefaction behaviour of sand”, Geotechnical earthquake engineering and soil dynamics III, Edited by P. Dakoulas, M. Yegian, and R. Holtz. American Society of Civil Engineers, Geotechnical Special Publication, 75(1): 766–777, (1998).
  • [17] Ziotopoulou K., Boulanger R.W. and Kramer S.L., “Site response analysis of liquefying sites”, GeoCongress, ASCE, 1799 - 1808, (2012).
  • [18] Ecemis N., “Simulation of seismic liquefaction: 1-g model testing system and shaking table tests”, European Journal of Environmental and Civil Engineering, 17(10): 899 - 919, (2013).
  • [19] Petalas A. and Galavi V., “Plaxis Liquefaction Model UBC3D-PLM”, Online, (2013). Available in: http://kb.plaxis.nl/search/site/UBC3D-PLM.
  • [20] Sriskandakumar S., “Cyclic Loading Response of Fraser Sand for Validation of Numerical Models Simulating Centrifuge Tests”, Master thesis, The University of British Columbia, Department of Civil Engineering, (2004).
  • [21] Ozenc S., “PM4SAND Zemin Bünye Modeline ait Parametrelerin Yüzeysel Temellerde Sıvılaşma Kaynaklı Deformasyonlara Etkisi”, Master Tezi, İstanbul Üniversitesi, Cerrahpaşa Lisansüstü Eğitim Enstitüsü, (2019).
  • [22] Önalp A., Sert S. ve Bol E., “Adapazarı Zeminlerinin Deprem Performansı”, Zemin Mekaniği ve Temel Mühendisliği 8. Ulusal Kongresi, İstanbul, 373 - 382, (2000).
  • [23] Erken A., “The Role of Geotechnical Factors on Observed Damage in Adapazarı”, XVth International Conference on Soil Mechanics & Geotechnical Engineering, İstanbul, 15 - 22, (2001).
  • [24] TS1900/1987, “İnşaat mühendisliğinde zemin lâboratuvar deneyleri - Bölüm 1: Fiziksel özelliklerin tayini”, (2006).
  • [25] TS1500/2000, “İnşaat mühendisliğinde zeminlerin sınıflandırılması”, (2000).
  • [26] Sert S., “Aluviyal Ortamda Kazıklı Yayılı Temellerin Üç Boyutlu Analizi”, Doktora tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, (2003).
  • [27] Bol E. ve Önalp A., “Adapazarı Zeminlerinin Jeomorfolojik ve Geoteknik Özellikleri”, ZMTM 9. Ulusal Kongresi, Eskişehir, 1 - 8, (2002).
  • [28] Sancio R.B., Bray J.D., Stewart J.P., Youd T.L., Durgunoğlu H.T., Önalp A., Seed R.B., Chrıstensen C., Baturay M.B. and Karadayılar T., “Correlation between ground failure and soil conditions in Adapazari, Turkey”, Soil Dynamics and Earthquake Engineering, 22(9-12): 1093 - 1102, (2002).
  • [29] Seed R.B., Cetin K.O., Moss R.E., Kammerer A.M., Wu J., Pestana J.M., Riemer M., Sancio R., J. Bray, R. Kayen and A. Faris, “Recent advances in soil liquefaction engineering: a unified and consistent framework”, 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, California, (2003).
  • [30] Bol E., Önalp A., Arel E., Sert S. and Özocak A., “Liquefaction of silts: the Adapazari criteria”, Bulletin of Earthquake Engineering, 8(4): 859 - 873 (2010).
  • [31] Seed H.B. and Idriss I.M., “Simplified procedure for evaluating soil liquefaction potential”, Journal of Soil Mechanics, 97(9): 1249 - 1273, (1971).
  • [32] Iwasaki T., Arawaka T. and Tokida K.I., “Simplified procedures for assessing soil liquefaction during earthquakes”, Dynamics and Earthquake Engineering, 3(1): 49 - 58, (1984).
  • [33] Liao S.S and Whitman R.V., “Overburden correction factors for SPT in sand”, Journal of Geotechnical Engineering, 112(3): 373 - 377, (1986).
  • [34] Robertson P. and Wride C.E., “Cyclic liquefaction and its evaluation based on SPT and CPT”, NCEER Work-shop on Evaluation of Liquefaction Resistance of Soils, Report NCEER-97-0022, National Center for Earthquake Engineering Research, SUNY Buffalo, NY, (1997).
  • [35] TBDY 2018, “Türkiye Bina Deprem Yönetmeliği: Deprem Etkisi Altında Binaların Tasarımı için Esaslar”, (2018).
  • [36] Juang C.H., Yuan H., Lee D.H. and Lin P.S., “A simplified CPT-based method for evaluating liquefaction potential of soils”, Journal of geotechnical and geoenvironmental engineering, 129(1), 66 - 80, (2003).
  • [37] Galavi V., Petalas A. and Brinkgreve R.B.J., “Finite Element Modelling of Seismic Liqufaction in Soils”, Geotechnical Engineering Journal of the SEAGS & AGSSEA, 44(3): 55 - 64, (2013).
  • [38] Tsegaye A.B., “Plaxis Liquefaction Model”, Delft, The Netherlands, (2010).
  • [39] Schweiger H.F., “The Role of Advanced Constitutive Models in Geotechnical Engineering”, Journal of Geomechanics and Tunneling, 1(5): 336 - 344, (2008).
  • [40] Beaty M.H. and Byrne P.M., “UBCSAND Constitutive Model Version 904aR”, Documentation Report: UBCSAND Constitutive Model on Itasca UDM Web Site, (2011).
  • [41] E. Naesgaard, “A hybrid effective stress-total stress procedure for analysing soil embankments subjected to potential liquefaction and flow”, Doctorate thesis, University of British Columbia, (2011).
  • [42] Marka A., “Evaluation of the UBC3D-PLM Constitutive Model For Prediction of Earthquake Induced Liquefaction On Embankment Dams”, Master Thesis, TU Delft CITG, (2013).
  • [43] Meyerhof G., “Discussion on research on determining the density of sands by spoon penetration testing”, 4th International Conference on Soil Mechanics and Foundation Engineering, London, (1957).
  • [44] Cubrinovski M. and Ishihara K., “Correlation between penetration resistance and relative density of sandy soils”, 15. ICSMGE, İstanbul, Türkiye (2001).
  • [45] PLAXIS 2D CONNECT Edition V21, “PLAXIS 2D CONNECT Edition V21 Tutorial 16 Free Vibration and Earthquake Analysis of a Building”, (2021).
  • [46] Kuhlemeyer R.L., and Lysmer J., “Finite Element Method Accuracy for Wave Propagation Problems”, Journal of Soil Mechanics and Foundation Devision, 99(5): 421 - 427, (1973).
  • [47] Demir S. ve Özener, P., “Sıvılaşmanın UBC3D-PLM Model ile Tahmin Edilmesi: Santrifüj Deneyi Örneği”, Teknik Dergi, 30: 9421-9442, (2019).
  • [48] Sünbül A.B. ve Parlak S., “Sonlu elemanlara dayalı sayısal analiz; temel altı zemin iyileştirme örneği”, 2nd International Sustainable Buildings Symposium, ISBS, Ankara, Turkey, 253 - 257, (2015).
  • [49] Dülger M., “UBCSAND model ile sıvılaşma davranışının incelenmesi”, Master tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2015).
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Selen Davran 0000-0002-0233-793X

Aşkın Özocak 0000-0003-1102-1424

Sedat Sert 0000-0002-4114-6132

Ertan Bol 0000-0002-3903-0384

Early Pub Date March 27, 2024
Publication Date July 25, 2024
Submission Date April 18, 2022
Published in Issue Year 2024

Cite

APA Davran, S., Özocak, A., Sert, S., Bol, E. (2024). Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz ile Belirlenmesi ve Zemin İyileştirmesinin Analize Etkileri. Politeknik Dergisi, 27(3), 1029-1041. https://doi.org/10.2339/politeknik.1105277
AMA Davran S, Özocak A, Sert S, Bol E. Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz ile Belirlenmesi ve Zemin İyileştirmesinin Analize Etkileri. Politeknik Dergisi. July 2024;27(3):1029-1041. doi:10.2339/politeknik.1105277
Chicago Davran, Selen, Aşkın Özocak, Sedat Sert, and Ertan Bol. “Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz Ile Belirlenmesi Ve Zemin İyileştirmesinin Analize Etkileri”. Politeknik Dergisi 27, no. 3 (July 2024): 1029-41. https://doi.org/10.2339/politeknik.1105277.
EndNote Davran S, Özocak A, Sert S, Bol E (July 1, 2024) Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz ile Belirlenmesi ve Zemin İyileştirmesinin Analize Etkileri. Politeknik Dergisi 27 3 1029–1041.
IEEE S. Davran, A. Özocak, S. Sert, and E. Bol, “Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz ile Belirlenmesi ve Zemin İyileştirmesinin Analize Etkileri”, Politeknik Dergisi, vol. 27, no. 3, pp. 1029–1041, 2024, doi: 10.2339/politeknik.1105277.
ISNAD Davran, Selen et al. “Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz Ile Belirlenmesi Ve Zemin İyileştirmesinin Analize Etkileri”. Politeknik Dergisi 27/3 (July 2024), 1029-1041. https://doi.org/10.2339/politeknik.1105277.
JAMA Davran S, Özocak A, Sert S, Bol E. Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz ile Belirlenmesi ve Zemin İyileştirmesinin Analize Etkileri. Politeknik Dergisi. 2024;27:1029–1041.
MLA Davran, Selen et al. “Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz Ile Belirlenmesi Ve Zemin İyileştirmesinin Analize Etkileri”. Politeknik Dergisi, vol. 27, no. 3, 2024, pp. 1029-41, doi:10.2339/politeknik.1105277.
Vancouver Davran S, Özocak A, Sert S, Bol E. Alüvyon Zeminlerin Sıvılaşma Potansiyelinin Sayısal Analiz ile Belirlenmesi ve Zemin İyileştirmesinin Analize Etkileri. Politeknik Dergisi. 2024;27(3):1029-41.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.