Research Article
BibTex RIS Cite

Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology

Year 2022, , 1799 - 1808, 16.12.2022
https://doi.org/10.2339/politeknik.1109423

Abstract

Disposal of chemical weapons is a very complex issue, and this ammunition can be disposed of by nonthermal or thermal methods after separating from metal and energetic parts. Thermal methods are incineration, supercritical oxidation, and plasma gasification technology. Since the plasma gasification technology is operated at temperatures much higher than 2000 ºC, the bond structures of chemical compounds are broken and gases containing fewer heavy metals are released. This method, which is a more environmentally friendly disposal method compared to other thermal methods, is the subject of the study. The gasification of chemical agents such as Sulfur Mustard, Nitrogen Mustard, and Tabun, and explosives TNT (trinitrotoluen), RDX (Royal Demolition Explosive), and PETN (Pentaerythritol tetranitrate) with plasma technology was modeled with VMGSim© software, and the contents of the synthesis gas released were examined. Both chemical agents and explosives studied in this study were chosen because they are the most commonly used chemicals in chemical munitions. Besides, the effect of the amount of air, oxygen, and steam entering the reactor on the composition of the combustion products released while these chemicals are gasified has been investigated.

References

  • [1] Harvey A., “Detection and Identification of Chemical Warfare Agents and Explosives in Complex Matrices” Doktora Tezi, University of York and Defence Science Technology Laboratory Chemistry, (2019).
  • [2] https://www.opcw.org/sites/default/files/documents/Fact _Finding_Mission/s-1510-2017_e_.pdf
  • [3] https://www.opcw.org/sites/default/files/documents/ 2019/07/ec92dg01%28e%29.pdf
  • [4] https://www.opcw.org/sites/default/files/documents/ S_series/2018/en/s-1612-2018_e___1_.pdf
  • [5] https://www.opcw.org/sites/default/files/documents/ 2018/09/s-1671-2018%28e%29.pdf
  • [6] https://www.opcw.org/mediacentre/news/2017/03/opcw-executive-council-condemns-chemical-weapons-use-fatalincident
  • [7] Chemical Weapons Convention [Available from: https://www.opcw.org/chemical-weapons-convention/articles/article-ii-definitions-and-criteria]
  • [8] Inbaraj SD, Menezes GA, “Chemical Weapons: Lethal Weapons of Uncivilized World!”, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(4), 671-682, (2013).
  • [9] Pita R., Anadon A, “Handbook of Toxicology of Chemical Warfare Agents”, Ramesh C. Gupta, Academic Press, 3, Hindistan, (2020).
  • [10] Aroniadou-Anderjaska V., Apland J.P., Figueiredo T.H., Furtado M.D.A., Braga M.F., “Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures”, Neuropharmacology. 181(108298), (2020).
  • [11] Pita R., Vidal-Asensi S.. “Cutaneous and systemic toxicology of vesicant (blister) warfare agents”, Actas Dermo-Sifiliográficas (English Edition), 101, 7-18, (2010).
  • [12] Zellner T., Eyer F.. “Choking agents and chlorine gas–History, pathophysiology, clinical effects and treatment”, Toxicol Lett., 320, 73-79, (2020).
  • [13] https://www.icrc.org/en/doc/assets/files/publications/icrc -002-4121.pdf
  • [14] Efeoğlu P., Dağlıoğlu N., Gören, Gülmen M.K., Hilal A.. “Toxicologic Evaluation of Pepper Spray used as a Riot Control Agent: A Case Report”, Turkish Journal of Forensic Medicine. 29, 48-54. (2015).
  • [15] Genevois M. E, Ve Dinç M., “Design of reverse logistics network for waste tire incineration in cement factories”, Politeknik Dergisi, *(*): *, (*).
  • [16] Ðurić S., Nedić B., Malbašić S., J. Baralić. “Application of new technologies for demilitarization ordnance in order to protect enviroment”, Acta Technica Corviniensis-Bulletin of Engineering, 13, 103-106, (2020).
  • [17] Wilkinson J, Watt D, “Review of demilitarisation and disposal techniques for munitions and related materials”, MSIAC/NATO/PfP, Bruksel, (2006).
  • [18] Poulin I. “Literature Review on Demilitarization of Munitions: Document Prepared for the RIGHTTRAC Technology Demonstration Project”, Defence R&D Canada – Valcartier, Canada, (2010).
  • [19] https://www.peoacwa.army.mil/wp-content/uploads/PCD_Final_EIS_2002.pdf
  • [20] Greenberg MR. “Public health, law, and local control: destruction of the US chemical weapons stockpile.” American Joournal of Public Health, 93(8), 1222-1226, (2003).
  • [21] Yesodharan S.. “Supercritical water oxidation: an environmentally safe method for the disposal of organic wastes”, Current Scıence-Bangalore., 82, 1112-1122, (2002).
  • [22] Abelleira-Pareira J.M., Portela J.R., “Supercritical Water Oxidation of Isopropanol Under Conditions of Both Oxidant Deficit and Excell”, Chemical Engineering Transactions, 24(1): 181-186, (2011).
  • [23] National Research Council, “Alternative Technologies for The Destruction Of Chemical Agents And Munition”, National Academy Press, Washington, D.C., (1993).
  • [24] Topal H.. “Energy Production from Municipal Solid Waste Using Plasma Gasification”, Progress in Energy, Energy, and the Environment, Springer International Publishing, Switzerland, (2014).
  • [25] Karadağ H., Fırat S. Ve Işık N.S., “Utilization of steel slag as road base and subbase material”, Journal Of Polytechnic, 23(3): 799-812, (2020).
  • [26] Atakan M. Ve Yıldız K., “Self-healing potential of porous asphalt concrete containing different aggregates and metal wastes through microwave heating”, Politeknik Dergisi, *(*):*, (*).
  • [27] Pearson G.S., Magee RS., “Critical evaluation of proven chemical weapon destruction Technologies”, Pure and Applied Chemistry, 74, 187-316, (2002).
  • [28] Ierardi M., Lemieux P., Oudejans L., “Review of Thermal Destruction Technologies for chemical amd Biological Agents Bound on Materials”, United States Environmental Protection Agency, North Carolina, (2015).
  • [29] VMGSim 10.0 Build 128+ Software. VMG Empowering Process Simulation Manual. Available: https://tech-story.net/download/#https://dl.tech-story.net/dld/OdIwzXUJ
  • [30] Ministry of Environment and Urbanization, Regulation on Control of Industrial Air Pollution. Available at: https://www.mevzuat.gov.tr/File/GeneratePdf? mevzuatNo=13184&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5. Access date: 28 June 2022.
  • [31] National Research Council., “Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons.” The National Academies Press., Washington, DC, (1999).
  • [32] Benallou A, Habib E., Abdallaoui H.E.A.E., Garmes H., “Purification of the Toxic Gaseous HCN Emissions by Oxidation in O2 Atmosphere in the Gas Phase: Quantum Chemical Modeling”. European Reviews of Chemical Research, 5(1): 3-10, (2018).
  • [33] Osińska M., “Decomposition of gaseous HCN in the presence of Ni-containing catalysts”. Reaction Kinetics, Mechanisms and Catalysis, 109, 57–65 (2013).

Kimyasal Silahların Bertarafında Termal Yöntemler ve Plazma Teknolojisinin Bilgisayar Modellemesi

Year 2022, , 1799 - 1808, 16.12.2022
https://doi.org/10.2339/politeknik.1109423

Abstract

Kimyasal silahların bertarafı oldukça karmaşık bir konu olup, metal ve enerjik (patlayıcı) kısımları mühimmattan ayrıldıktan sonra termal ya da nontermal yöntemlerle bertaraf edilebilmektedir. Termal yöntemler yakma, süper kritik oksidasyon, erimiş metal teknolojisi ve plazma gazlaştırmadır. Plazma gazlaştırma teknolojisi, 2000 ºC'den çok daha yüksek sıcaklıklarda çalıştırıldığından kimyasal bileşiklerin bağ yapıları kırılır ve daha az ağır metal içeren gazlar açığa çıkar. Diğer termal yöntemlere göre daha çevreci bir bertaraf yöntemi olan bu yöntem çalışmanın konusunu oluşturmaktadır. Kükürt Mustard, Nitrojen Mustard ve Tabun gibi kimyasal ajanlar ile TNT, RDX ve PETN patlayıcılarının plazma teknolojisi ile gazlaştırılması VMGSim© yazılımı ile modellenmiş ve açığa çıkan sentez gazının içerikleri incelenmiştir. Bu çalışmada incelenen hem kimyasal maddeler hem de patlayıcılar, kimyasal mühimmatlarda en sık kullanılan kimyasallar oldukları için seçilmiştir. Ayrıca reaktöre giren hava, oksijen ve buhar miktarının, bu kimyasallar gazlaştırılırken, açığa çıkan yanma ürünlerinin bileşimine etkisi araştırılmıştır.

References

  • [1] Harvey A., “Detection and Identification of Chemical Warfare Agents and Explosives in Complex Matrices” Doktora Tezi, University of York and Defence Science Technology Laboratory Chemistry, (2019).
  • [2] https://www.opcw.org/sites/default/files/documents/Fact _Finding_Mission/s-1510-2017_e_.pdf
  • [3] https://www.opcw.org/sites/default/files/documents/ 2019/07/ec92dg01%28e%29.pdf
  • [4] https://www.opcw.org/sites/default/files/documents/ S_series/2018/en/s-1612-2018_e___1_.pdf
  • [5] https://www.opcw.org/sites/default/files/documents/ 2018/09/s-1671-2018%28e%29.pdf
  • [6] https://www.opcw.org/mediacentre/news/2017/03/opcw-executive-council-condemns-chemical-weapons-use-fatalincident
  • [7] Chemical Weapons Convention [Available from: https://www.opcw.org/chemical-weapons-convention/articles/article-ii-definitions-and-criteria]
  • [8] Inbaraj SD, Menezes GA, “Chemical Weapons: Lethal Weapons of Uncivilized World!”, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(4), 671-682, (2013).
  • [9] Pita R., Anadon A, “Handbook of Toxicology of Chemical Warfare Agents”, Ramesh C. Gupta, Academic Press, 3, Hindistan, (2020).
  • [10] Aroniadou-Anderjaska V., Apland J.P., Figueiredo T.H., Furtado M.D.A., Braga M.F., “Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures”, Neuropharmacology. 181(108298), (2020).
  • [11] Pita R., Vidal-Asensi S.. “Cutaneous and systemic toxicology of vesicant (blister) warfare agents”, Actas Dermo-Sifiliográficas (English Edition), 101, 7-18, (2010).
  • [12] Zellner T., Eyer F.. “Choking agents and chlorine gas–History, pathophysiology, clinical effects and treatment”, Toxicol Lett., 320, 73-79, (2020).
  • [13] https://www.icrc.org/en/doc/assets/files/publications/icrc -002-4121.pdf
  • [14] Efeoğlu P., Dağlıoğlu N., Gören, Gülmen M.K., Hilal A.. “Toxicologic Evaluation of Pepper Spray used as a Riot Control Agent: A Case Report”, Turkish Journal of Forensic Medicine. 29, 48-54. (2015).
  • [15] Genevois M. E, Ve Dinç M., “Design of reverse logistics network for waste tire incineration in cement factories”, Politeknik Dergisi, *(*): *, (*).
  • [16] Ðurić S., Nedić B., Malbašić S., J. Baralić. “Application of new technologies for demilitarization ordnance in order to protect enviroment”, Acta Technica Corviniensis-Bulletin of Engineering, 13, 103-106, (2020).
  • [17] Wilkinson J, Watt D, “Review of demilitarisation and disposal techniques for munitions and related materials”, MSIAC/NATO/PfP, Bruksel, (2006).
  • [18] Poulin I. “Literature Review on Demilitarization of Munitions: Document Prepared for the RIGHTTRAC Technology Demonstration Project”, Defence R&D Canada – Valcartier, Canada, (2010).
  • [19] https://www.peoacwa.army.mil/wp-content/uploads/PCD_Final_EIS_2002.pdf
  • [20] Greenberg MR. “Public health, law, and local control: destruction of the US chemical weapons stockpile.” American Joournal of Public Health, 93(8), 1222-1226, (2003).
  • [21] Yesodharan S.. “Supercritical water oxidation: an environmentally safe method for the disposal of organic wastes”, Current Scıence-Bangalore., 82, 1112-1122, (2002).
  • [22] Abelleira-Pareira J.M., Portela J.R., “Supercritical Water Oxidation of Isopropanol Under Conditions of Both Oxidant Deficit and Excell”, Chemical Engineering Transactions, 24(1): 181-186, (2011).
  • [23] National Research Council, “Alternative Technologies for The Destruction Of Chemical Agents And Munition”, National Academy Press, Washington, D.C., (1993).
  • [24] Topal H.. “Energy Production from Municipal Solid Waste Using Plasma Gasification”, Progress in Energy, Energy, and the Environment, Springer International Publishing, Switzerland, (2014).
  • [25] Karadağ H., Fırat S. Ve Işık N.S., “Utilization of steel slag as road base and subbase material”, Journal Of Polytechnic, 23(3): 799-812, (2020).
  • [26] Atakan M. Ve Yıldız K., “Self-healing potential of porous asphalt concrete containing different aggregates and metal wastes through microwave heating”, Politeknik Dergisi, *(*):*, (*).
  • [27] Pearson G.S., Magee RS., “Critical evaluation of proven chemical weapon destruction Technologies”, Pure and Applied Chemistry, 74, 187-316, (2002).
  • [28] Ierardi M., Lemieux P., Oudejans L., “Review of Thermal Destruction Technologies for chemical amd Biological Agents Bound on Materials”, United States Environmental Protection Agency, North Carolina, (2015).
  • [29] VMGSim 10.0 Build 128+ Software. VMG Empowering Process Simulation Manual. Available: https://tech-story.net/download/#https://dl.tech-story.net/dld/OdIwzXUJ
  • [30] Ministry of Environment and Urbanization, Regulation on Control of Industrial Air Pollution. Available at: https://www.mevzuat.gov.tr/File/GeneratePdf? mevzuatNo=13184&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5. Access date: 28 June 2022.
  • [31] National Research Council., “Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons.” The National Academies Press., Washington, DC, (1999).
  • [32] Benallou A, Habib E., Abdallaoui H.E.A.E., Garmes H., “Purification of the Toxic Gaseous HCN Emissions by Oxidation in O2 Atmosphere in the Gas Phase: Quantum Chemical Modeling”. European Reviews of Chemical Research, 5(1): 3-10, (2018).
  • [33] Osińska M., “Decomposition of gaseous HCN in the presence of Ni-containing catalysts”. Reaction Kinetics, Mechanisms and Catalysis, 109, 57–65 (2013).
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Murat Şahin This is me 0000-0003-1478-3221

Caner Dereli 0000-0001-9939-5783

Publication Date December 16, 2022
Submission Date April 27, 2022
Published in Issue Year 2022

Cite

APA Şahin, M., & Dereli, C. (2022). Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology. Politeknik Dergisi, 25(4), 1799-1808. https://doi.org/10.2339/politeknik.1109423
AMA Şahin M, Dereli C. Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology. Politeknik Dergisi. December 2022;25(4):1799-1808. doi:10.2339/politeknik.1109423
Chicago Şahin, Murat, and Caner Dereli. “Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology”. Politeknik Dergisi 25, no. 4 (December 2022): 1799-1808. https://doi.org/10.2339/politeknik.1109423.
EndNote Şahin M, Dereli C (December 1, 2022) Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology. Politeknik Dergisi 25 4 1799–1808.
IEEE M. Şahin and C. Dereli, “Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology”, Politeknik Dergisi, vol. 25, no. 4, pp. 1799–1808, 2022, doi: 10.2339/politeknik.1109423.
ISNAD Şahin, Murat - Dereli, Caner. “Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology”. Politeknik Dergisi 25/4 (December 2022), 1799-1808. https://doi.org/10.2339/politeknik.1109423.
JAMA Şahin M, Dereli C. Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology. Politeknik Dergisi. 2022;25:1799–1808.
MLA Şahin, Murat and Caner Dereli. “Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1799-08, doi:10.2339/politeknik.1109423.
Vancouver Şahin M, Dereli C. Thermal Methods in Chemical Weapon Destruction And Computer Modeling of Plasma Technology. Politeknik Dergisi. 2022;25(4):1799-808.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.