Research Article
BibTex RIS Cite

Investigation of the Effect of U Drills with Different Properties on Thrust Force, Torque and Spindle Load

Year 2023, , 387 - 400, 27.03.2023
https://doi.org/10.2339/politeknik.1113301

Abstract

Udrills are indexable insert drill commonly used in drilling operations. It is estimated that the market share among drilling tools is around 53%. They are produced in the same nominal diameter but in different lengths. There are usually two cooling holes, one behind the central insert and the other behind the peripheral insert. However, in some Udrills, an extra third cooling hole is drilled by the manufacturer. In this study, the effects of different length/diameter ratios, extra coolant hole and drilling parameters on thrust force, torque and spindle load were investigated in order to determine the effect of differences in U drills on hole drilling. AA 2024-T351 was drilled to a depth of 40mm using Udrills with a body diameter of 20mm. A total of 4 Udrills (3D, 4D, 4De, 5D) were used. Three feed rates (0.06, 0.09, 0.12mm/rev) and three cutting speeds (200, 250, 300m/min) were used in the experiments. According to the Anova analysis, it was concluded that while the length/diameter ratio of Udrills had an effect of 56.97% on thrust force and 21.46% on spindle load, it was not effective for torque. The 4De Udrill with extra coolant hole gave 34.2% higher thrust force, 0.3% higher torque value and 26.53% lower spindle load compared to the 4D Udrill without extra coolant hole.  

Supporting Institution

Gazi Üniversitesi Rektörlüğü BAP

Project Number

07/2019-08

Thanks

It was supported by Gazi University Scientific Research Projects Unit with the code 07/2019-08. The researchers thank the Gazi University BAP unit for their support.

References

  • [1] Yalçın N., Kayır Y. and Erkal S., "AA2024 alüminyum alaşımına uygulanan yaşlandırma yöntemlerinin işlenebilirliğe etkisinin taguchi ve anova ile araştırılması", Politeknik Dergisi, 20:743-751, (2017).
  • [2] Fernández-Pérez J., Cantero J., Díaz-Álvarez J. and Miguélez M., "Hybrid composite-metal stack drilling with different minimum quantity lubrication levels", Materials, 12:448, (2019).
  • [3] Zolgharni M., Jones B., Bulpett R., Anson A. and Franks J., "Energy efficiency improvements in dry drilling with optimised diamond-like carbon coatings", Diamond and Related Materials, 17:1733-1737, (2008).
  • [4] Bourne K.A. and Kapoor S.G., “Process monitoring during micro-drilling via acoustic emission, ultrasonic sound, and spindle load sensors”, ASME 2012 International Manufacturing Science and Engineering Conference, 781-790, USA, (2012).
  • [5] Bhattacharya A., Das S., Majumder P. and Batish A., "Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA", Production Engineering, 3:31-40, (2009).
  • [6] Muthukrishnan N., Murugan M. and Rao K.P., "Machinability issues in turning of Al-SiC (10p) metal matrix composites", The International Journal of Advanced Manufacturing Technology, 39:211-218, (2008).
  • [7] Wang Q., Zhang D., Tang K. and Zhang Y., "A mechanics based prediction model for tool wear and power consumption in drilling operations and its applications", Journal of Cleaner Production, 234:171-184, (2019).
  • [8] Larek R., Brinksmeier E., Meyer D., Pawletta T. and Hagendorf O., "A discrete-event simulation approach to predict power consumption in machining processes", Production Engineering, 5:575, (2011).
  • [9] Yoon H.-S., Lee J.-Y., Kim M.-S. and Ahn S.-H., "Empirical power-consumption model for material removal in three-axis milling", Journal of Cleaner Production, 78:54-62, (2014).
  • [10] Shokrani A., Dhokia V. and Newman S., “Modelling and verification of energy consumption in CNC milling”, International Conference on Sustainable Design and Manufacturing, Greece, 123-133, (2016).
  • [11] Kim H., Ahn J., Kim S. and Takata S., "Real-time drill wear estimation based on spindle motor power", Journal of Materials Processing Technology, 124:267-273, (2002).
  • [12] Mendes O., Avila R., Abrao A., Reis P. and Davim J.P., "The performance of cutting fluids when machining aluminium alloys", Industrial Lubrication and Tribology, (2006).
  • [13] Shah P. and Khanna N., "Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques", Tribology International, 148:106314, (2020).
  • [14] Da Silva L., Del Claro V., Andrade C., Guesser W., Jackson M., and Machado A., "Tool wear monitoring in drilling of high-strength compacted graphite cast irons", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(1-2): 207–218, (2020).
  • [15] Corne R., Nath C., El Mansori M. and Kurfess T., "Enhancing spindle power data application with neural network for real-time tool wear/breakage prediction during inconel drilling", Procedia Manufacturing, 5:1-14, (2016).
  • [16] Cho H.S., Han J.-h., Chi S.-y. and Yoo K.-H., “A tool breakage detection system using load signals of spindle motors in CNC machines”, Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Austria, 160-163, (2016).
  • [17] Bose T., Majumdar A. and Chattopadhyay T., “Machine load estimation via stacked autoencoder regression”, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Canada, 2126-2130, (2018).
  • [18] Griffin R., Cao Y., Peng J. and Chen X., "Tool wear monitoring and replacement for tubesheet drilling", The International Journal of Advanced Manufacturing Technology, 86:2011-2020, (2016).
  • [19] Kim S., "Integration of pre-simulation and sensorless monitoring for smart mould machining", International Journal of Simulation Modelling, 15:623-636, (2016).
  • [20] Peña-Parás L., Maldonado-Cortés D., Rodríguez-Villalobos M., Romero-Cantú A.G. and Montemayor O.E., "Enhancing tool life, and reducing power consumption and surface roughness in milling processes by nanolubricants and laser surface texturing", Journal of Cleaner Production, 253:119836, (2020).
  • [21] Prickett P., Amer W. and Grosvenor R., "Sweeping filters and tooth rotation energy estimation (TREE) techniques for machine tool condition monitoring", Int J Mach Tools Manu, 45:1-8, (2005).
  • [22] Franco-Gasca L.A., Herrera-Ruiz G., Peniche-Vera R., de Jesús Romero-Troncoso R. and Leal-Tafolla W., "Sensorless tool failure monitoring system for drilling machines", International Journal of Machine Tools and Manufacture, 46:381-386, (2006).
  • [23] Lee K.-J., Lee T.-M. and Yang M.-Y., "Tool wear monitoring system for CNC end milling using a hybrid approach to cutting force regulation", The International Journal of Advanced Manufacturing Technology, 32:8-17, (2007).
  • [24] Peña-Parás L., Maldonado-Cortés D., Rodríguez-Villalobos M., Romero-Cantú A.G., Montemayor O.E., Herrera M., Trousselle G., González J., and Hugler W., "Optimization of milling parameters of 1018 steel and nanoparticle additive concentration in cutting fluids for enhancing multi-response characteristics", Wear, 426:877-886, (2019).
  • [25] Parsian A., “Regenerative Chatter Vibration in Indexable Drills: Modeling and Simulation”, PhD Thesis, University West-Department of Engineering Science- Research Enviroment Production Technology West, (2018).
  • [26] Parsian A., Magnevall M., Eynian M. and Beno T., "Time domain simulation of chatter vibrations in indexable drills", The International Journal of Advanced Manufacturing Technology, 89:1209- 1221, (2017).
  • [27] Liu L.L., Zhou L.P. and Ying Z.J., “The FEM Dynamic Simulation in the Drilling process with Indexable Inserts”, Advanced Materials Research, 557-559: 1292-1297, (2012).
  • [28] Parsian A., Magnevall M., Beno T. and Eynian M., "Sound analysis in drilling, frequency and time domains", Procedia CIRP, 58:411-415, (2017).
  • [29] Rahman M., Seah K. and Venkatesh V., "Performance evaluation of endrills", International Journal of Machine Tools and Manufacture, 28:341-349, (1988).
  • [30] Kabakli E., Bayramoglu M. and Geren N., "Evaluation of the surface roughness and geometric accuracies in a drilling process using the Taguchi analysis", Mater. Tehnol, 48:91-98, (2014).
  • [31] Tasdelen B., Wikblom T. and Ekered S., "Studies on minimum quantity lubrication (MQL) and air cooling at drilling", Journal of Materials Processing Technology, 200:339-346, (2008).
  • [32] Kheireddine A., Ammouri A., Lu T., Jawahir I. and Hamade R., "An FEM analysis with experimental validation to study the hardness of in-process cryogenically cooled drilled holes in Mg AZ31b", Procedia Cirp, 8:588-593, (2013).
  • [33] Parsian A., Magnevall M., Beno T. and Eynian M., "A mechanistic approach to model cutting forces in drilling with indexable inserts", Procedia Cirp, 24:74-79, (2014).
  • [34] Okada M., Asakawa N., Sentoku E., M’Saoubi R. and Ueda T., "Cutting performance of an indexable insert drill for difficult-to-cut materials under supplied oil mist", The International Journal of Advanced Manufacturing Technology, 72:475-485, (2014).
  • [35] Ahmed L.S. and Kumar M.P., "Cryogenic drilling of Ti–6Al–4V alloy under liquid nitrogen cooling", Materials and manufacturing processes, 31:951-959, (2016).
  • [36] Venkatesh V. and Xue W., "A study of the built-up edge in drilling with indexable coated carbide inserts", Journal of Materials Processing Technology, 58:379-384, (1996).
  • [37] Gökçe H., Çiftçi İ. and Gökçe H., "Frezeleme operasyonlarında kesme kuvvetlerinin deneysel ve sonlu elemanlar analizi ile incelenmesi: saf molibdenin işlenmesi üzerine bir çalışma", Politeknik Dergisi, 22:947-954, (2019).
  • [38] Rajesh S., Pethuraj M., Kumaran S.T., Uthayakumar M. and Rajini N., "Some studies on drilling of red mud reinforced aluminum composite", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 231:382-393, (2017).
  • [39] Ma F., Zhang H., Cao H. and Hon K., "An energy consumption optimization strategy for CNC milling", The International Journal of Advanced Manufacturing Technology, 90:1715-1726, (2017).
  • [40] Kaymakci M., Kilic Z. and Altintas Y., "Unified cutting force model for turning, boring, drilling and milling operations", International Journal of Machine Tools and Manufacture, 54:34-45, (2012).
  • [41] Zhu J., Kim H.J. and Kapoor S.G., "Microscale drilling of bulk metallic glass", Journal of Micro and Nano-Manufacturing, 1:1-9, (2013).
  • [42] Aydın M., "Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi", Politeknik Dergisi, 25(1) : 157-167, (2022).
  • [43] Kuntoğlu M. and Aslan A., "AISI 5140 Çeliğinin Tornalanması Esnasında Yaklaşma Açısı ve Kesme Parametrelerinin İşlenebilirliğe Etkisinin İncelenmesi", Politeknik Dergisi, 25(1): 145-155, (2021).

Farklı Özelliklere Sahip U Matkapların İtme Kuvveti, Tork ve İş Mili Yüküne Etkisinin İncelenmesi

Year 2023, , 387 - 400, 27.03.2023
https://doi.org/10.2339/politeknik.1113301

Abstract

U matkaplar delik delme operasyonlarında yaygın olarak kullanılan değiştirilebilir uçlu kesici takımlardır. Delme takımları içerisinde pazar payının %53 civarında olduğu tahmin edilmektedir. Aynı nominal çapta ancak farklı uzunluklarda üretilmektedirler. Genellikle biri merkezi ucun diğeri ise çevresel ucun arkasında olmak üzere iki tane soğutucu delik bulunmaktadır. Ancak bazı U matkaplarda üretici tarafından ekstra üçüncü bir soğutucu delik açılmaktadır. U matkaplarda bulunan bu farklılıkların delik delmeye etkisini tespit etmek amacıyla, bu çalışmada farklı uzunluk/çap oranlarının, ekstra açılmış soğutucu deliğin ve delme parametrelerinin itme kuvveti, tork ve iş mili yüküne etkisi araştırılmıştır. 2024-T351 alüminyum alaşımı, gövde çapı 20 mm olan U matkaplar kullanılarak 40 mm derinliğinde delinmiştir. Farklı uzunluk/çap oranlarının etkisini incelemek için 3 adet (3D, 4D ve 5D), ekstra soğutucu deliğin etkisini incelemek için ise 1 adet (4De) olmak üzere toplam 4 adet U matkap kullanılmıştır. Deneylerde, üç adet ilerleme miktarı (0.06, 0.09, 0.12 mm/rev) ve üç adet kesme hızı (200, 250, 300 m/min) kullanılmıştır. Anova analizine göre U matkapların uzunluk/çap oranı itme kuvvetinde %56.97, iş mili yükünde %21.46 etkiye sahipken tork için etkili olmadığı sonucuna varılmıştır. Ekstra soğutucu deliği bulunan 4De U matkap, bulunmayan 4D U matkaba göre itme kuvvetinde %34.2, tork değerinde % 0.3 oranında yüksek, iş mili yükünde %26.53 düşük bir değer vermiştir.

Project Number

07/2019-08

References

  • [1] Yalçın N., Kayır Y. and Erkal S., "AA2024 alüminyum alaşımına uygulanan yaşlandırma yöntemlerinin işlenebilirliğe etkisinin taguchi ve anova ile araştırılması", Politeknik Dergisi, 20:743-751, (2017).
  • [2] Fernández-Pérez J., Cantero J., Díaz-Álvarez J. and Miguélez M., "Hybrid composite-metal stack drilling with different minimum quantity lubrication levels", Materials, 12:448, (2019).
  • [3] Zolgharni M., Jones B., Bulpett R., Anson A. and Franks J., "Energy efficiency improvements in dry drilling with optimised diamond-like carbon coatings", Diamond and Related Materials, 17:1733-1737, (2008).
  • [4] Bourne K.A. and Kapoor S.G., “Process monitoring during micro-drilling via acoustic emission, ultrasonic sound, and spindle load sensors”, ASME 2012 International Manufacturing Science and Engineering Conference, 781-790, USA, (2012).
  • [5] Bhattacharya A., Das S., Majumder P. and Batish A., "Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA", Production Engineering, 3:31-40, (2009).
  • [6] Muthukrishnan N., Murugan M. and Rao K.P., "Machinability issues in turning of Al-SiC (10p) metal matrix composites", The International Journal of Advanced Manufacturing Technology, 39:211-218, (2008).
  • [7] Wang Q., Zhang D., Tang K. and Zhang Y., "A mechanics based prediction model for tool wear and power consumption in drilling operations and its applications", Journal of Cleaner Production, 234:171-184, (2019).
  • [8] Larek R., Brinksmeier E., Meyer D., Pawletta T. and Hagendorf O., "A discrete-event simulation approach to predict power consumption in machining processes", Production Engineering, 5:575, (2011).
  • [9] Yoon H.-S., Lee J.-Y., Kim M.-S. and Ahn S.-H., "Empirical power-consumption model for material removal in three-axis milling", Journal of Cleaner Production, 78:54-62, (2014).
  • [10] Shokrani A., Dhokia V. and Newman S., “Modelling and verification of energy consumption in CNC milling”, International Conference on Sustainable Design and Manufacturing, Greece, 123-133, (2016).
  • [11] Kim H., Ahn J., Kim S. and Takata S., "Real-time drill wear estimation based on spindle motor power", Journal of Materials Processing Technology, 124:267-273, (2002).
  • [12] Mendes O., Avila R., Abrao A., Reis P. and Davim J.P., "The performance of cutting fluids when machining aluminium alloys", Industrial Lubrication and Tribology, (2006).
  • [13] Shah P. and Khanna N., "Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques", Tribology International, 148:106314, (2020).
  • [14] Da Silva L., Del Claro V., Andrade C., Guesser W., Jackson M., and Machado A., "Tool wear monitoring in drilling of high-strength compacted graphite cast irons", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(1-2): 207–218, (2020).
  • [15] Corne R., Nath C., El Mansori M. and Kurfess T., "Enhancing spindle power data application with neural network for real-time tool wear/breakage prediction during inconel drilling", Procedia Manufacturing, 5:1-14, (2016).
  • [16] Cho H.S., Han J.-h., Chi S.-y. and Yoo K.-H., “A tool breakage detection system using load signals of spindle motors in CNC machines”, Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Austria, 160-163, (2016).
  • [17] Bose T., Majumdar A. and Chattopadhyay T., “Machine load estimation via stacked autoencoder regression”, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Canada, 2126-2130, (2018).
  • [18] Griffin R., Cao Y., Peng J. and Chen X., "Tool wear monitoring and replacement for tubesheet drilling", The International Journal of Advanced Manufacturing Technology, 86:2011-2020, (2016).
  • [19] Kim S., "Integration of pre-simulation and sensorless monitoring for smart mould machining", International Journal of Simulation Modelling, 15:623-636, (2016).
  • [20] Peña-Parás L., Maldonado-Cortés D., Rodríguez-Villalobos M., Romero-Cantú A.G. and Montemayor O.E., "Enhancing tool life, and reducing power consumption and surface roughness in milling processes by nanolubricants and laser surface texturing", Journal of Cleaner Production, 253:119836, (2020).
  • [21] Prickett P., Amer W. and Grosvenor R., "Sweeping filters and tooth rotation energy estimation (TREE) techniques for machine tool condition monitoring", Int J Mach Tools Manu, 45:1-8, (2005).
  • [22] Franco-Gasca L.A., Herrera-Ruiz G., Peniche-Vera R., de Jesús Romero-Troncoso R. and Leal-Tafolla W., "Sensorless tool failure monitoring system for drilling machines", International Journal of Machine Tools and Manufacture, 46:381-386, (2006).
  • [23] Lee K.-J., Lee T.-M. and Yang M.-Y., "Tool wear monitoring system for CNC end milling using a hybrid approach to cutting force regulation", The International Journal of Advanced Manufacturing Technology, 32:8-17, (2007).
  • [24] Peña-Parás L., Maldonado-Cortés D., Rodríguez-Villalobos M., Romero-Cantú A.G., Montemayor O.E., Herrera M., Trousselle G., González J., and Hugler W., "Optimization of milling parameters of 1018 steel and nanoparticle additive concentration in cutting fluids for enhancing multi-response characteristics", Wear, 426:877-886, (2019).
  • [25] Parsian A., “Regenerative Chatter Vibration in Indexable Drills: Modeling and Simulation”, PhD Thesis, University West-Department of Engineering Science- Research Enviroment Production Technology West, (2018).
  • [26] Parsian A., Magnevall M., Eynian M. and Beno T., "Time domain simulation of chatter vibrations in indexable drills", The International Journal of Advanced Manufacturing Technology, 89:1209- 1221, (2017).
  • [27] Liu L.L., Zhou L.P. and Ying Z.J., “The FEM Dynamic Simulation in the Drilling process with Indexable Inserts”, Advanced Materials Research, 557-559: 1292-1297, (2012).
  • [28] Parsian A., Magnevall M., Beno T. and Eynian M., "Sound analysis in drilling, frequency and time domains", Procedia CIRP, 58:411-415, (2017).
  • [29] Rahman M., Seah K. and Venkatesh V., "Performance evaluation of endrills", International Journal of Machine Tools and Manufacture, 28:341-349, (1988).
  • [30] Kabakli E., Bayramoglu M. and Geren N., "Evaluation of the surface roughness and geometric accuracies in a drilling process using the Taguchi analysis", Mater. Tehnol, 48:91-98, (2014).
  • [31] Tasdelen B., Wikblom T. and Ekered S., "Studies on minimum quantity lubrication (MQL) and air cooling at drilling", Journal of Materials Processing Technology, 200:339-346, (2008).
  • [32] Kheireddine A., Ammouri A., Lu T., Jawahir I. and Hamade R., "An FEM analysis with experimental validation to study the hardness of in-process cryogenically cooled drilled holes in Mg AZ31b", Procedia Cirp, 8:588-593, (2013).
  • [33] Parsian A., Magnevall M., Beno T. and Eynian M., "A mechanistic approach to model cutting forces in drilling with indexable inserts", Procedia Cirp, 24:74-79, (2014).
  • [34] Okada M., Asakawa N., Sentoku E., M’Saoubi R. and Ueda T., "Cutting performance of an indexable insert drill for difficult-to-cut materials under supplied oil mist", The International Journal of Advanced Manufacturing Technology, 72:475-485, (2014).
  • [35] Ahmed L.S. and Kumar M.P., "Cryogenic drilling of Ti–6Al–4V alloy under liquid nitrogen cooling", Materials and manufacturing processes, 31:951-959, (2016).
  • [36] Venkatesh V. and Xue W., "A study of the built-up edge in drilling with indexable coated carbide inserts", Journal of Materials Processing Technology, 58:379-384, (1996).
  • [37] Gökçe H., Çiftçi İ. and Gökçe H., "Frezeleme operasyonlarında kesme kuvvetlerinin deneysel ve sonlu elemanlar analizi ile incelenmesi: saf molibdenin işlenmesi üzerine bir çalışma", Politeknik Dergisi, 22:947-954, (2019).
  • [38] Rajesh S., Pethuraj M., Kumaran S.T., Uthayakumar M. and Rajini N., "Some studies on drilling of red mud reinforced aluminum composite", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 231:382-393, (2017).
  • [39] Ma F., Zhang H., Cao H. and Hon K., "An energy consumption optimization strategy for CNC milling", The International Journal of Advanced Manufacturing Technology, 90:1715-1726, (2017).
  • [40] Kaymakci M., Kilic Z. and Altintas Y., "Unified cutting force model for turning, boring, drilling and milling operations", International Journal of Machine Tools and Manufacture, 54:34-45, (2012).
  • [41] Zhu J., Kim H.J. and Kapoor S.G., "Microscale drilling of bulk metallic glass", Journal of Micro and Nano-Manufacturing, 1:1-9, (2013).
  • [42] Aydın M., "Parmak Frezeleme Sırasında Takım Salgısının Etkisi Dahil Edilerek Kesme Kuvvetlerinin Tahmini ve Analizi", Politeknik Dergisi, 25(1) : 157-167, (2022).
  • [43] Kuntoğlu M. and Aslan A., "AISI 5140 Çeliğinin Tornalanması Esnasında Yaklaşma Açısı ve Kesme Parametrelerinin İşlenebilirliğe Etkisinin İncelenmesi", Politeknik Dergisi, 25(1): 145-155, (2021).
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Aslan Akdulum 0000-0003-2030-3167

Yunus Kayır 0000-0001-6793-7103

Project Number 07/2019-08
Publication Date March 27, 2023
Submission Date May 6, 2022
Published in Issue Year 2023

Cite

APA Akdulum, A., & Kayır, Y. (2023). Investigation of the Effect of U Drills with Different Properties on Thrust Force, Torque and Spindle Load. Politeknik Dergisi, 26(1), 387-400. https://doi.org/10.2339/politeknik.1113301
AMA Akdulum A, Kayır Y. Investigation of the Effect of U Drills with Different Properties on Thrust Force, Torque and Spindle Load. Politeknik Dergisi. March 2023;26(1):387-400. doi:10.2339/politeknik.1113301
Chicago Akdulum, Aslan, and Yunus Kayır. “Investigation of the Effect of U Drills With Different Properties on Thrust Force, Torque and Spindle Load”. Politeknik Dergisi 26, no. 1 (March 2023): 387-400. https://doi.org/10.2339/politeknik.1113301.
EndNote Akdulum A, Kayır Y (March 1, 2023) Investigation of the Effect of U Drills with Different Properties on Thrust Force, Torque and Spindle Load. Politeknik Dergisi 26 1 387–400.
IEEE A. Akdulum and Y. Kayır, “Investigation of the Effect of U Drills with Different Properties on Thrust Force, Torque and Spindle Load”, Politeknik Dergisi, vol. 26, no. 1, pp. 387–400, 2023, doi: 10.2339/politeknik.1113301.
ISNAD Akdulum, Aslan - Kayır, Yunus. “Investigation of the Effect of U Drills With Different Properties on Thrust Force, Torque and Spindle Load”. Politeknik Dergisi 26/1 (March 2023), 387-400. https://doi.org/10.2339/politeknik.1113301.
JAMA Akdulum A, Kayır Y. Investigation of the Effect of U Drills with Different Properties on Thrust Force, Torque and Spindle Load. Politeknik Dergisi. 2023;26:387–400.
MLA Akdulum, Aslan and Yunus Kayır. “Investigation of the Effect of U Drills With Different Properties on Thrust Force, Torque and Spindle Load”. Politeknik Dergisi, vol. 26, no. 1, 2023, pp. 387-00, doi:10.2339/politeknik.1113301.
Vancouver Akdulum A, Kayır Y. Investigation of the Effect of U Drills with Different Properties on Thrust Force, Torque and Spindle Load. Politeknik Dergisi. 2023;26(1):387-400.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.